{"title":"Increased electrolyte flow resistance and blockage due to hydrogen evolution in a flow battery single cell under stack electrolyte feeding conditions","authors":"Jincheng Dai , Qiang Ye , Tianshou Zhao","doi":"10.1016/j.jpowsour.2024.235940","DOIUrl":null,"url":null,"abstract":"<div><div>In a flow battery stack, individual cells are typically fed with electrolyte in a parallel configuration, resulting in identical pressure drops across each cell. In this parallel liquid supply system, the distribution of electrolyte flow is closely related to the flow resistance in each branch. During operation, gas bubbles generated by chemical and physical processes tend to accumulate in the electrode pores, obstructing electrolyte flow and leading to uneven electrolyte distribution. Previous studies have mainly focused on single-cell experiments using constant flow pumps, which differ significantly from the nearly constant pressure difference liquid supply within the stack electrodes. To investigate the effects of gas evolution on liquid flow under constant pressure difference conditions, we propose a gravity-driven electrolyte feeding system for testing in a single cell, which simulates the flow conditions encountered in real stack applications. Under the interaction between gas bubbles and liquid flow, hydrogen evolution reactions at the scale of “mA cm<sup>-2</sup>” significantly reduce the electrolyte flow through the porous electrode. When the pressure difference drops below a critical threshold, the electrolyte flow rate continues to decrease significantly and may even stop entirely. And a sufficient feeding pressure difference is essential for enhancing bubble removal efficiency.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235940"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018925","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In a flow battery stack, individual cells are typically fed with electrolyte in a parallel configuration, resulting in identical pressure drops across each cell. In this parallel liquid supply system, the distribution of electrolyte flow is closely related to the flow resistance in each branch. During operation, gas bubbles generated by chemical and physical processes tend to accumulate in the electrode pores, obstructing electrolyte flow and leading to uneven electrolyte distribution. Previous studies have mainly focused on single-cell experiments using constant flow pumps, which differ significantly from the nearly constant pressure difference liquid supply within the stack electrodes. To investigate the effects of gas evolution on liquid flow under constant pressure difference conditions, we propose a gravity-driven electrolyte feeding system for testing in a single cell, which simulates the flow conditions encountered in real stack applications. Under the interaction between gas bubbles and liquid flow, hydrogen evolution reactions at the scale of “mA cm-2” significantly reduce the electrolyte flow through the porous electrode. When the pressure difference drops below a critical threshold, the electrolyte flow rate continues to decrease significantly and may even stop entirely. And a sufficient feeding pressure difference is essential for enhancing bubble removal efficiency.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems