Increased electrolyte flow resistance and blockage due to hydrogen evolution in a flow battery single cell under stack electrolyte feeding conditions

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-30 DOI:10.1016/j.jpowsour.2024.235940
Jincheng Dai , Qiang Ye , Tianshou Zhao
{"title":"Increased electrolyte flow resistance and blockage due to hydrogen evolution in a flow battery single cell under stack electrolyte feeding conditions","authors":"Jincheng Dai ,&nbsp;Qiang Ye ,&nbsp;Tianshou Zhao","doi":"10.1016/j.jpowsour.2024.235940","DOIUrl":null,"url":null,"abstract":"<div><div>In a flow battery stack, individual cells are typically fed with electrolyte in a parallel configuration, resulting in identical pressure drops across each cell. In this parallel liquid supply system, the distribution of electrolyte flow is closely related to the flow resistance in each branch. During operation, gas bubbles generated by chemical and physical processes tend to accumulate in the electrode pores, obstructing electrolyte flow and leading to uneven electrolyte distribution. Previous studies have mainly focused on single-cell experiments using constant flow pumps, which differ significantly from the nearly constant pressure difference liquid supply within the stack electrodes. To investigate the effects of gas evolution on liquid flow under constant pressure difference conditions, we propose a gravity-driven electrolyte feeding system for testing in a single cell, which simulates the flow conditions encountered in real stack applications. Under the interaction between gas bubbles and liquid flow, hydrogen evolution reactions at the scale of “mA cm<sup>-2</sup>” significantly reduce the electrolyte flow through the porous electrode. When the pressure difference drops below a critical threshold, the electrolyte flow rate continues to decrease significantly and may even stop entirely. And a sufficient feeding pressure difference is essential for enhancing bubble removal efficiency.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235940"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018925","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In a flow battery stack, individual cells are typically fed with electrolyte in a parallel configuration, resulting in identical pressure drops across each cell. In this parallel liquid supply system, the distribution of electrolyte flow is closely related to the flow resistance in each branch. During operation, gas bubbles generated by chemical and physical processes tend to accumulate in the electrode pores, obstructing electrolyte flow and leading to uneven electrolyte distribution. Previous studies have mainly focused on single-cell experiments using constant flow pumps, which differ significantly from the nearly constant pressure difference liquid supply within the stack electrodes. To investigate the effects of gas evolution on liquid flow under constant pressure difference conditions, we propose a gravity-driven electrolyte feeding system for testing in a single cell, which simulates the flow conditions encountered in real stack applications. Under the interaction between gas bubbles and liquid flow, hydrogen evolution reactions at the scale of “mA cm-2” significantly reduce the electrolyte flow through the porous electrode. When the pressure difference drops below a critical threshold, the electrolyte flow rate continues to decrease significantly and may even stop entirely. And a sufficient feeding pressure difference is essential for enhancing bubble removal efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液流电池单电池在叠层加料条件下析氢导致的电解质流动阻力增大和堵塞
在液流电池组中,单个电池通常以并联配置的方式注入电解质,从而导致每个电池的压降相同。在并联供液系统中,电解液的流动分布与各支路的流动阻力密切相关。在工作过程中,化学和物理过程产生的气泡容易积聚在电极孔中,阻碍电解质流动,导致电解质分布不均匀。以往的研究主要集中在使用恒流泵的单细胞实验上,这与堆电极内几乎恒定压差的液体供应有很大的不同。为了研究恒压差条件下气体演化对液体流动的影响,我们提出了一种用于单电池测试的重力驱动电解质进料系统,该系统模拟了实际堆栈应用中遇到的流动条件。在气泡与液体流动相互作用下,“mA cm-2”尺度下的析氢反应显著降低了多孔电极的电解质流量。当压差降至某一临界阈值以下时,电解质流速继续显著下降,甚至可能完全停止。适当的进料压差是提高除泡效率的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1