Muhammad Salman , Hanli Qin , Yuming Zou , Zhenyuan Ji , Hu Zhou , Xiaoping Shen , Hongbo Zhou , Guoxing Zhu , Premlatha Subramanian , Aihua Yuan
{"title":"In-situ decoration of NiCo-thiophene based metal-organic framework on nickel foam as an efficient electrocatalyst for oxygen evolution reaction","authors":"Muhammad Salman , Hanli Qin , Yuming Zou , Zhenyuan Ji , Hu Zhou , Xiaoping Shen , Hongbo Zhou , Guoxing Zhu , Premlatha Subramanian , Aihua Yuan","doi":"10.1016/j.jpowsour.2024.235942","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient electrocatalysts for oxygen evolution reaction (OER) is highly demanded but still challenging due to sluggish reaction kinetics. Metal-organic frameworks (MOFs) are considered potential electrocatalysts for efficient OER. Herein, NiCo-thiophene based metal-organic frameworks (NiCo-TDC-MOF) are <em>in situ</em> grown on nickel foam (NF) <em>via</em> a convenient hydrothermal approach. The as-prepared binder-free NiCo-TDC-MOF electrode exhibits exceptional OER performance with ultralow overpotentials of 194, 248, and 296 mV at current densities of 10, 100 and 200 mA cm<sup>−2</sup>, respectively. Notably, the electrode displays outstanding OER stability, operating steadily for 110 h and 73 h at current densities of 100 and 500 mA cm<sup>−2</sup>, respectively. This work develops a facile strategy for designing lattice defect MOF-based electrocatalysts, paving the way for efficient OER systems. Moreover, the as-prepared electrocatalyst meets industrial applicability criteria with its stability at high current density.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"629 ","pages":"Article 235942"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018949","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing efficient electrocatalysts for oxygen evolution reaction (OER) is highly demanded but still challenging due to sluggish reaction kinetics. Metal-organic frameworks (MOFs) are considered potential electrocatalysts for efficient OER. Herein, NiCo-thiophene based metal-organic frameworks (NiCo-TDC-MOF) are in situ grown on nickel foam (NF) via a convenient hydrothermal approach. The as-prepared binder-free NiCo-TDC-MOF electrode exhibits exceptional OER performance with ultralow overpotentials of 194, 248, and 296 mV at current densities of 10, 100 and 200 mA cm−2, respectively. Notably, the electrode displays outstanding OER stability, operating steadily for 110 h and 73 h at current densities of 100 and 500 mA cm−2, respectively. This work develops a facile strategy for designing lattice defect MOF-based electrocatalysts, paving the way for efficient OER systems. Moreover, the as-prepared electrocatalyst meets industrial applicability criteria with its stability at high current density.
开发高效的析氧反应电催化剂的需求很大,但由于反应动力学缓慢,仍然具有挑战性。金属有机骨架(MOFs)被认为是高效OER的潜在电催化剂。本文采用水热法在泡沫镍(NF)上原位生长镍噻吩基金属有机骨架(NiCo-TDC-MOF)。制备的无粘结剂NiCo-TDC-MOF电极在电流密度为10、100和200 mA cm - 2时的过电位分别为194、248和296 mV,具有优异的OER性能。值得注意的是,该电极显示出出色的OER稳定性,在电流密度分别为100和500 mA cm−2的情况下稳定工作110 h和73 h。这项工作为设计基于mof的晶格缺陷电催化剂开发了一种简便的策略,为高效的OER系统铺平了道路。此外,所制备的电催化剂在高电流密度下具有稳定性,符合工业适用性标准。
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems