Exploring the impact of integrated design on employee learning engagement in the ubiquitous learning context: A deep learning-based hybrid multistage approach
{"title":"Exploring the impact of integrated design on employee learning engagement in the ubiquitous learning context: A deep learning-based hybrid multistage approach","authors":"Dawei SHANG , Caiyi ZHANG , Li JIN","doi":"10.1016/j.chb.2024.108468","DOIUrl":null,"url":null,"abstract":"<div><div>Learning engagement has received the attention of academics and practitioners; however, studies on employee learning engagement are limited. Based on an integrated hardware-software-value-design perspective and domain-specific innovativeness theory, we developed and tested a theoretical framework using a novel and hybrid multistage approach combining a partial least squares (PLS) structural equation model (SEM) and artificial neural networks from deep learning. We used multigroup analysis (PLS-MGA-ANN), which examines key integrated design elements and domain-specific innovativeness drivers of employee learning engagement in ubiquitous learning context. According to a sample of learners’ responses, the linear PLS-SEM results demonstrated that (a) integrating design elements, including perceived compatibility, familiarity, value, and user interface design, had a direct impact on domain-specific innovativeness; (b) domain-specific innovativeness had a direct impact on employee learning engagement and played a mediating role in the relationship between integrating design elements and employee learning engagement; and (c) copresence moderated the relationships between domain-specific innovativeness and employee learning engagement. Furthermore, through the evaluation of nonlinear models of the neural network, perceived compatibility and value revealed nonlinear average importance. Practical and theoretical implications are discussed.</div></div>","PeriodicalId":48471,"journal":{"name":"Computers in Human Behavior","volume":"164 ","pages":"Article 108468"},"PeriodicalIF":9.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747563224003364","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Learning engagement has received the attention of academics and practitioners; however, studies on employee learning engagement are limited. Based on an integrated hardware-software-value-design perspective and domain-specific innovativeness theory, we developed and tested a theoretical framework using a novel and hybrid multistage approach combining a partial least squares (PLS) structural equation model (SEM) and artificial neural networks from deep learning. We used multigroup analysis (PLS-MGA-ANN), which examines key integrated design elements and domain-specific innovativeness drivers of employee learning engagement in ubiquitous learning context. According to a sample of learners’ responses, the linear PLS-SEM results demonstrated that (a) integrating design elements, including perceived compatibility, familiarity, value, and user interface design, had a direct impact on domain-specific innovativeness; (b) domain-specific innovativeness had a direct impact on employee learning engagement and played a mediating role in the relationship between integrating design elements and employee learning engagement; and (c) copresence moderated the relationships between domain-specific innovativeness and employee learning engagement. Furthermore, through the evaluation of nonlinear models of the neural network, perceived compatibility and value revealed nonlinear average importance. Practical and theoretical implications are discussed.
期刊介绍:
Computers in Human Behavior is a scholarly journal that explores the psychological aspects of computer use. It covers original theoretical works, research reports, literature reviews, and software and book reviews. The journal examines both the use of computers in psychology, psychiatry, and related fields, and the psychological impact of computer use on individuals, groups, and society. Articles discuss topics such as professional practice, training, research, human development, learning, cognition, personality, and social interactions. It focuses on human interactions with computers, considering the computer as a medium through which human behaviors are shaped and expressed. Professionals interested in the psychological aspects of computer use will find this journal valuable, even with limited knowledge of computers.