Technical patterns and news sentiment in stock markets

Markus Leippold , Qian Wang , Min Yang
{"title":"Technical patterns and news sentiment in stock markets","authors":"Markus Leippold ,&nbsp;Qian Wang ,&nbsp;Min Yang","doi":"10.1016/j.jfds.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the effectiveness of technical patterns in predicting asset prices and market movements, emphasizing the role of news sentiment. We employ an image recognition method to detect technical patterns in price images and assess whether this approach provides more information than traditional rule-based methods. Our findings indicate that many model-based patterns yield significant returns in the US market, whereas top-type patterns are less effective in the Chinese market. The model demonstrates high accuracy in training samples and strong out-of-sample performance. Our empirical analysis concludes that technical patterns remain effective in recent stock markets when combined with news sentiment, offering a profitable portfolio strategy. Moreover, we find patterns better predict returns for firms with high momentum, institutional ownership, and prior patterns in US, while in China, they are more effective for small firms with high momentum and institutional ownership. This study highlights the potential of image recognition methods in market data analysis and underscores the importance of sentiment in technical analysis.</div></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"10 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918824000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the effectiveness of technical patterns in predicting asset prices and market movements, emphasizing the role of news sentiment. We employ an image recognition method to detect technical patterns in price images and assess whether this approach provides more information than traditional rule-based methods. Our findings indicate that many model-based patterns yield significant returns in the US market, whereas top-type patterns are less effective in the Chinese market. The model demonstrates high accuracy in training samples and strong out-of-sample performance. Our empirical analysis concludes that technical patterns remain effective in recent stock markets when combined with news sentiment, offering a profitable portfolio strategy. Moreover, we find patterns better predict returns for firms with high momentum, institutional ownership, and prior patterns in US, while in China, they are more effective for small firms with high momentum and institutional ownership. This study highlights the potential of image recognition methods in market data analysis and underscores the importance of sentiment in technical analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
期刊最新文献
Interpretable machine learning model for predicting activist investment targets Technical patterns and news sentiment in stock markets Do commodity prices matter for global systemic risk? Evidence from ML variable selection Tail-driven portfolios: Unveiling financial contagion and enhancing risk management Machine learning private equity returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1