Fengyuan Zhuang , Yizhang Liu , Xiaojie Li , Ji Zhou , Riqing Chen , Lifang Wei , Changcai Yang , Jiayi Ma
{"title":"MGCNet: Multi-granularity consensus network for remote sensing image correspondence pruning","authors":"Fengyuan Zhuang , Yizhang Liu , Xiaojie Li , Ji Zhou , Riqing Chen , Lifang Wei , Changcai Yang , Jiayi Ma","doi":"10.1016/j.isprsjprs.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>Correspondence pruning aims to remove false correspondences (outliers) from an initial putative correspondence set. This process holds significant importance and serves as a fundamental step in various applications within the fields of remote sensing and photogrammetry. The presence of noise, illumination changes, and small overlaps in remote sensing images frequently result in a substantial number of outliers within the initial set, thereby rendering the correspondence pruning notably challenging. Although the spatial consensus of correspondences has been widely used to determine the correctness of each correspondence, achieving uniform consensus can be challenging due to the uneven distribution of correspondences. Existing works have mainly focused on either local or global consensus, with a very small perspective or large perspective, respectively. They often ignore the moderate perspective between local and global consensus, called group consensus, which serves as a buffering organization from local to global consensus, hence leading to insufficient correspondence consensus aggregation. To address this issue, we propose a multi-granularity consensus network (MGCNet) to achieve consensus across regions of different scales, which leverages local, group, and global consensus to accomplish robust and accurate correspondence pruning. Specifically, we introduce a GroupGCN module that randomly divides the initial correspondences into several groups and then focuses on group consensus and acts as a buffer organization from local to global consensus. Additionally, we propose a Multi-level Local Feature Aggregation Module that adapts to the size of the local neighborhood to capture local consensus and a Multi-order Global Feature Module to enhance the richness of the global consensus. Experimental results demonstrate that MGCNet outperforms state-of-the-art methods on various tasks, highlighting the superiority and great generalization of our method. In particular, we achieve 3.95% and 8.5% mAP<span><math><mrow><mn>5</mn><mo>°</mo></mrow></math></span> improvement without RANSAC on the YFCC100M dataset in known and unknown scenes for pose estimation, compared to the second-best models (MSA-LFC and CLNet). Source code: https://github.com/1211193023/MGCNet.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"219 ","pages":"Pages 38-51"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004192","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Correspondence pruning aims to remove false correspondences (outliers) from an initial putative correspondence set. This process holds significant importance and serves as a fundamental step in various applications within the fields of remote sensing and photogrammetry. The presence of noise, illumination changes, and small overlaps in remote sensing images frequently result in a substantial number of outliers within the initial set, thereby rendering the correspondence pruning notably challenging. Although the spatial consensus of correspondences has been widely used to determine the correctness of each correspondence, achieving uniform consensus can be challenging due to the uneven distribution of correspondences. Existing works have mainly focused on either local or global consensus, with a very small perspective or large perspective, respectively. They often ignore the moderate perspective between local and global consensus, called group consensus, which serves as a buffering organization from local to global consensus, hence leading to insufficient correspondence consensus aggregation. To address this issue, we propose a multi-granularity consensus network (MGCNet) to achieve consensus across regions of different scales, which leverages local, group, and global consensus to accomplish robust and accurate correspondence pruning. Specifically, we introduce a GroupGCN module that randomly divides the initial correspondences into several groups and then focuses on group consensus and acts as a buffer organization from local to global consensus. Additionally, we propose a Multi-level Local Feature Aggregation Module that adapts to the size of the local neighborhood to capture local consensus and a Multi-order Global Feature Module to enhance the richness of the global consensus. Experimental results demonstrate that MGCNet outperforms state-of-the-art methods on various tasks, highlighting the superiority and great generalization of our method. In particular, we achieve 3.95% and 8.5% mAP improvement without RANSAC on the YFCC100M dataset in known and unknown scenes for pose estimation, compared to the second-best models (MSA-LFC and CLNet). Source code: https://github.com/1211193023/MGCNet.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.