Pei Wang , Pengxin Wu , Chao Wang , Xiaofeng Huang , Lihong Wang , Chengsong Li , Qi Niu , Hui Li
{"title":"Chicken body temperature monitoring method in complex environment based on multi-source image fusion and deep learning","authors":"Pei Wang , Pengxin Wu , Chao Wang , Xiaofeng Huang , Lihong Wang , Chengsong Li , Qi Niu , Hui Li","doi":"10.1016/j.compag.2024.109689","DOIUrl":null,"url":null,"abstract":"<div><div>Severe diseases in chickens present substantial risks to poultry husbandry industry. Notably, alterations in body temperature serve as critical clinical indicators of these diseases. Consequently, timely and accurate monitoring of body temperature is essential for the early detection of severe health issues in chickens. This study presents a novel method for simultaneous body temperature detection of multiple chickens in caged poultry environments. A dataset of 2896 chicken head images was developed. The YOLOv8n-mvc model was created to accurately detect chicken head positions and extracted temperature data and distance information through the fusion of RGB, thermal infrared, and depth images. The chicken head temperature was calibrated using distance information. The YOLOv8n-mvc model established in this study achieved a precision of 91.6 %, recall of 92.5 %, F1 score of 92.0 %, and [email protected] of 96.0 %. The model was successfully deployed on an edge computing device for validation tests, demonstrating its feasibility for chicken body temperature detection. This study provides a reference for developing a chicken health monitoring system based on body temperature.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"228 ","pages":"Article 109689"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010809","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe diseases in chickens present substantial risks to poultry husbandry industry. Notably, alterations in body temperature serve as critical clinical indicators of these diseases. Consequently, timely and accurate monitoring of body temperature is essential for the early detection of severe health issues in chickens. This study presents a novel method for simultaneous body temperature detection of multiple chickens in caged poultry environments. A dataset of 2896 chicken head images was developed. The YOLOv8n-mvc model was created to accurately detect chicken head positions and extracted temperature data and distance information through the fusion of RGB, thermal infrared, and depth images. The chicken head temperature was calibrated using distance information. The YOLOv8n-mvc model established in this study achieved a precision of 91.6 %, recall of 92.5 %, F1 score of 92.0 %, and [email protected] of 96.0 %. The model was successfully deployed on an edge computing device for validation tests, demonstrating its feasibility for chicken body temperature detection. This study provides a reference for developing a chicken health monitoring system based on body temperature.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.