Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2024-12-01 DOI:10.1016/j.biopha.2024.117724
Jun Hee Oh , Jonggwan Park , Hee Kyoung Kang , Hee Joo Park , Yoonkyung Park
{"title":"Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii","authors":"Jun Hee Oh ,&nbsp;Jonggwan Park ,&nbsp;Hee Kyoung Kang ,&nbsp;Hee Joo Park ,&nbsp;Yoonkyung Park","doi":"10.1016/j.biopha.2024.117724","DOIUrl":null,"url":null,"abstract":"<div><div>Although the discovery of antibiotics has made significant positive contributions to public health and medicine, it now poses a serious threat due to the increasing antibiotic resistance in various bacteria. Carbapenem-resistant and multidrug-resistant (MDR) <em>Acinetobacter baumannii</em> is spreading globally, exacerbating respiratory diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Antimicrobial peptides (AMPs), with broad antibacterial activity, have emerged as promising alternatives for treating MDR <em>A. baumannii</em> infections. The AMP P5 exhibits strong antibacterial and anti-biofilm activities against MDR <em>A. baumannii</em> strains isolated from patients. Compared to colistin, a commonly used antibiotic for MDR <em>A. baumannii</em> infections, P5 has a lower potential for inducing drug resistance. Additionally, P5 displays stability in human serum and minimal cytotoxicity in human cell lines. P5 not only suppressed the overexpression of pro-inflammatory cytokines and inflammatory transcription factors in lung epithelial cells (A549) and in a mouse model of respiratory infection but also alleviated lung tissue damage caused by infection. Moreover, P5 effectively alleviated excessive mucin secretion <em>in vitro</em> and <em>in vivo</em> by inhibiting inflammatory transcription factors, epidermal growth factor receptor, and signal transducer and activator of transcription 3—key regulators of mucin expression, a hallmark of inflammatory respiratory diseases. These findings highlight the therapeutic potential of P5 in treating MDR <em>A. baumannii</em> infections and associated inflammatory respiratory conditions.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"181 ","pages":"Article 117724"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S075333222401610X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although the discovery of antibiotics has made significant positive contributions to public health and medicine, it now poses a serious threat due to the increasing antibiotic resistance in various bacteria. Carbapenem-resistant and multidrug-resistant (MDR) Acinetobacter baumannii is spreading globally, exacerbating respiratory diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Antimicrobial peptides (AMPs), with broad antibacterial activity, have emerged as promising alternatives for treating MDR A. baumannii infections. The AMP P5 exhibits strong antibacterial and anti-biofilm activities against MDR A. baumannii strains isolated from patients. Compared to colistin, a commonly used antibiotic for MDR A. baumannii infections, P5 has a lower potential for inducing drug resistance. Additionally, P5 displays stability in human serum and minimal cytotoxicity in human cell lines. P5 not only suppressed the overexpression of pro-inflammatory cytokines and inflammatory transcription factors in lung epithelial cells (A549) and in a mouse model of respiratory infection but also alleviated lung tissue damage caused by infection. Moreover, P5 effectively alleviated excessive mucin secretion in vitro and in vivo by inhibiting inflammatory transcription factors, epidermal growth factor receptor, and signal transducer and activator of transcription 3—key regulators of mucin expression, a hallmark of inflammatory respiratory diseases. These findings highlight the therapeutic potential of P5 in treating MDR A. baumannii infections and associated inflammatory respiratory conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Liquid biopsy in lung cancer: The role of circulating tumor cells in diagnosis, treatment, and prognosis Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers Nanotherapeutic strategy against glioblastoma using enzyme inhibitors Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii Hydroxyurea inhibits proliferation and stimulates apoptosis through inducible nitric oxide synthase in erythroid cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1