Fei Sun , Li-Bing Xu , Song-Xian Lai , Hai Xu , Xin-Chang Li , Zeng Lin
{"title":"Effect of platform design of dental implant abutment on loosening and fatigue performance","authors":"Fei Sun , Li-Bing Xu , Song-Xian Lai , Hai Xu , Xin-Chang Li , Zeng Lin","doi":"10.1016/j.engfailanal.2024.109134","DOIUrl":null,"url":null,"abstract":"<div><div>Under the influence of daily occlusal forces, mechanical complications such as loose connections and fatigue damage are significant factors contributing to dental implant failure. The structural design of implant components is crucial in enhancing the long-term durability of implant systems. This research explores the impact of the platform structure of the abutment on connection loosening and fatigue properties. Four abutments with varying platform structures were designed and produced. The study involved testing and comparing screw loosening behavior before and after loading, as well as evaluating static load strength and fatigue characteristics. Observations were made on abutment surface wear and fatigue sections. A three-dimensional model was utilized to confirm damage location using the finite element method. Results indicate that the abutment’s platform structure enhances anti-loosening performance and static failure load, while reducing fatigue life. Additionally, the position of fatigue fracture in the abutment is influenced by the load magnitude. The finite element analysis (FEA) findings align with the results of the static load tests.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"168 ","pages":"Article 109134"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630724011804","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Under the influence of daily occlusal forces, mechanical complications such as loose connections and fatigue damage are significant factors contributing to dental implant failure. The structural design of implant components is crucial in enhancing the long-term durability of implant systems. This research explores the impact of the platform structure of the abutment on connection loosening and fatigue properties. Four abutments with varying platform structures were designed and produced. The study involved testing and comparing screw loosening behavior before and after loading, as well as evaluating static load strength and fatigue characteristics. Observations were made on abutment surface wear and fatigue sections. A three-dimensional model was utilized to confirm damage location using the finite element method. Results indicate that the abutment’s platform structure enhances anti-loosening performance and static failure load, while reducing fatigue life. Additionally, the position of fatigue fracture in the abutment is influenced by the load magnitude. The finite element analysis (FEA) findings align with the results of the static load tests.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.