Exploring cationic amylose inclusion complexes as a pioneering carrier for aroma molecules; fabrication, and characterization

Zohreh Mokhtari , Seid Mahdi Jafari
{"title":"Exploring cationic amylose inclusion complexes as a pioneering carrier for aroma molecules; fabrication, and characterization","authors":"Zohreh Mokhtari ,&nbsp;Seid Mahdi Jafari","doi":"10.1016/j.carpta.2024.100615","DOIUrl":null,"url":null,"abstract":"<div><div>Amylose complexes are considered excellent carriers for flavor compounds (FCs), leading to their controlled release. Nevertheless, the utilization of native amylose for the creation of inclusion complexes (ICs) is constrained by its pronounced propensity for retrogradation (re-crystallization) and its limited water solubility. Therefore, chemical modification of amylose stands as an innovative approach to generate soluble ICs. This study focused on generating and evaluating ICs composed of cationic amylose sourced from sago and corn, which then loaded with FCs (menthol, thymol, and eugenol). The characteristics of ICs with FCs were characterized in terms of including X-ray diffraction (XRD), Complex Index, Fourier transform infrared/Raman spectroscopy, and scanning electron/atomic force microscopy. The XRD and the complex index findings suggested that cationizing the anhydroglucose units of amylose was accomplished without disrupting its helical structure, while also showing a promising ability to create ICs. Notably, sago amylose exhibited a significantly higher complex index compared to corn amylose (<em>p</em> &lt; 0.05). Morphological analysis of the cationized amylose-flavor ICs revealed the presence of spherical and lamellar crystalline structures, suggesting a well-organized assembly resulting from ICs. Also, due to its high hydrophobicity and low vapor pressure, menthol in the presence of ethanol was able to form more ICs with amylose compared to thymol and eugenol. Finally, the study highlighted the unique properties of sago amylose, including its high retrogradation tendency, which was further enhanced by cationization. These findings underscore the utility of cationized amylose, particularly from sago, as an advanced material for encapsulating hydrophobic compounds.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"8 ","pages":"Article 100615"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924001956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Amylose complexes are considered excellent carriers for flavor compounds (FCs), leading to their controlled release. Nevertheless, the utilization of native amylose for the creation of inclusion complexes (ICs) is constrained by its pronounced propensity for retrogradation (re-crystallization) and its limited water solubility. Therefore, chemical modification of amylose stands as an innovative approach to generate soluble ICs. This study focused on generating and evaluating ICs composed of cationic amylose sourced from sago and corn, which then loaded with FCs (menthol, thymol, and eugenol). The characteristics of ICs with FCs were characterized in terms of including X-ray diffraction (XRD), Complex Index, Fourier transform infrared/Raman spectroscopy, and scanning electron/atomic force microscopy. The XRD and the complex index findings suggested that cationizing the anhydroglucose units of amylose was accomplished without disrupting its helical structure, while also showing a promising ability to create ICs. Notably, sago amylose exhibited a significantly higher complex index compared to corn amylose (p < 0.05). Morphological analysis of the cationized amylose-flavor ICs revealed the presence of spherical and lamellar crystalline structures, suggesting a well-organized assembly resulting from ICs. Also, due to its high hydrophobicity and low vapor pressure, menthol in the presence of ethanol was able to form more ICs with amylose compared to thymol and eugenol. Finally, the study highlighted the unique properties of sago amylose, including its high retrogradation tendency, which was further enhanced by cationization. These findings underscore the utility of cationized amylose, particularly from sago, as an advanced material for encapsulating hydrophobic compounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Spray-drying encapsulation of sunflower pollen peptides using carbohydrate polymers: Physicochemical, antioxidant, structural and morphological analysis Exploring cationic amylose inclusion complexes as a pioneering carrier for aroma molecules; fabrication, and characterization Modification of regenerated cellulose fibres by cork-derived suberin and the cutin fraction from grape skins Carboxymethyl chitosan oligosaccharide enzymatic hydroxylates with reactive oxygen species scavenging and anti-inflammatory activity for topical treatment of skin photodamage Chitosan-based multimodal polymeric nanoparticles targeting pancreatic β-cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1