Stress corrosion cracking mechanisms in bridge cable steels: Anodic dissolution or hydrogen embrittlement

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-28 DOI:10.1016/j.ijhydene.2024.11.408
Zeling Zhang , Linfeng Wang , Wenxian Huang , Xuegang Min , Guoqiang Luo , Haibin Wang , Lichu Zhou , Zonghan Xie , Feng Fang
{"title":"Stress corrosion cracking mechanisms in bridge cable steels: Anodic dissolution or hydrogen embrittlement","authors":"Zeling Zhang ,&nbsp;Linfeng Wang ,&nbsp;Wenxian Huang ,&nbsp;Xuegang Min ,&nbsp;Guoqiang Luo ,&nbsp;Haibin Wang ,&nbsp;Lichu Zhou ,&nbsp;Zonghan Xie ,&nbsp;Feng Fang","doi":"10.1016/j.ijhydene.2024.11.408","DOIUrl":null,"url":null,"abstract":"<div><div>Two key mechanisms, anodic dissolution, and hydrogen embrittlement, govern the stress corrosion cracking (SCC) in bridge cable steel wires. This study investigates the predominant mechanism influencing the SCC fracture time of bridge cable steel wires through electrochemical methods and thermal desorption analysis (TDA), offering protective measures. It contrasts the impacts of these mechanisms on electrochemical and mechanical properties and fracture morphology. The results show that the main mechanism of SCC in ammonium thiocyanate (NH<sub>4</sub>SCN) solution is hydrogen embrittlement (HE). Applying an anodic current (50 A/m<sup>2</sup>) can reduce the hydrogen absorption from 4.99 ppm to 0.2 ppm, and extend the fracture time from 26.1 h to 46.1 h. For the HE type SCC, the corrosion potential of the steel wire does not change with the corrosion time, and the tensile strength and diameter of the steel wire are the almost same as before corrosion. This research provides a theoretical basis for analyzing and protecting bridge cable steel wires against SCC.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 46-56"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051048","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two key mechanisms, anodic dissolution, and hydrogen embrittlement, govern the stress corrosion cracking (SCC) in bridge cable steel wires. This study investigates the predominant mechanism influencing the SCC fracture time of bridge cable steel wires through electrochemical methods and thermal desorption analysis (TDA), offering protective measures. It contrasts the impacts of these mechanisms on electrochemical and mechanical properties and fracture morphology. The results show that the main mechanism of SCC in ammonium thiocyanate (NH4SCN) solution is hydrogen embrittlement (HE). Applying an anodic current (50 A/m2) can reduce the hydrogen absorption from 4.99 ppm to 0.2 ppm, and extend the fracture time from 26.1 h to 46.1 h. For the HE type SCC, the corrosion potential of the steel wire does not change with the corrosion time, and the tensile strength and diameter of the steel wire are the almost same as before corrosion. This research provides a theoretical basis for analyzing and protecting bridge cable steel wires against SCC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桥梁缆索钢的应力腐蚀开裂机制:阳极溶解或氢脆
桥梁电缆钢丝应力腐蚀开裂的主要机理是阳极溶解和氢脆。通过电化学方法和热解吸分析(TDA)研究了影响桥梁电缆钢丝SCC断裂时间的主要机理,并提出了防护措施。对比了这些机制对电化学、力学性能和断口形貌的影响。结果表明,硫氰酸铵(NH4SCN)溶液中SCC的主要机理是氢脆(HE)。施加50 A/m2的阳极电流可使吸氢量从4.99 ppm降低到0.2 ppm,断口时间从26.1 h延长到46.1 h。对于HE型SCC,钢丝的腐蚀电位不随腐蚀时间的变化而变化,钢丝的抗拉强度和直径与腐蚀前基本相同。该研究为桥梁电缆钢丝的SCC分析和保护提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Mesoporous silica-modified metal organic frameworks derived bimetallic electrocatalysts for oxygen reduction reaction in microbial fuel cells Adoption of hydrogen-based steel production under uncertain domestic hydrogen availability: An Indonesian case study Possible role of nanobubbles in the pulsed plasma production of hydrogen Enhanced thermophilic hydrogen production from co-substrate of pretreated waste activated sludge and food waste: Analysis from microbial growth and metabolism Site suitability analysis for green hydrogen production using multi-criteria decision-making methods: A case study in the state of Ceará, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1