{"title":"Adoption of hydrogen-based steel production under uncertain domestic hydrogen availability: An Indonesian case study","authors":"Teuku Naraski Zahari, Benjamin McLellan","doi":"10.1016/j.ijhydene.2024.11.442","DOIUrl":null,"url":null,"abstract":"<div><div>In line with the Nationally-Determined Contribution (NDC), the Indonesian steel industry must move to a less energy and carbon-intensive production where the hydrogen-based Direct Reduction Iron Electric Arc Furnace (H2-DRI-EAF) pathway comes as a prominent alternative. However, due to the complexity of the transition it is important to understand the key uncertainties in the adoption of H2-DRI-EAF production pathway in the steel industry, particularly since it must also address the availability of hydrogen domestically. We developed a system dynamics model, conducted a sensitivity to investigate the uncertainties, and to evaluate their effect on the observed indicators. Our results conclude that GDP growth, hydrogen maximum injection rate, and renewables development rate as the key uncertainties to the adoption of hydrogen in the steel industry, and ultimately to the effort in decarbonizing the sector. Furthermore, we found that domestic hydrogen production can fulfil between 20% and 77% of the demand in the Indonesian steel industry. In Indonesia's case, our results show that the share of H<sub>2</sub>-DRI-EAF could be between 29 and 38% and the share of hydrogen in the fuel mix could vary widely from 1.91% to 18.9%. The findings in this study could potentially be useful for the steel industry and policy makers alike to design a comprehensive decarbonization strategies.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 549-570"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051395","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In line with the Nationally-Determined Contribution (NDC), the Indonesian steel industry must move to a less energy and carbon-intensive production where the hydrogen-based Direct Reduction Iron Electric Arc Furnace (H2-DRI-EAF) pathway comes as a prominent alternative. However, due to the complexity of the transition it is important to understand the key uncertainties in the adoption of H2-DRI-EAF production pathway in the steel industry, particularly since it must also address the availability of hydrogen domestically. We developed a system dynamics model, conducted a sensitivity to investigate the uncertainties, and to evaluate their effect on the observed indicators. Our results conclude that GDP growth, hydrogen maximum injection rate, and renewables development rate as the key uncertainties to the adoption of hydrogen in the steel industry, and ultimately to the effort in decarbonizing the sector. Furthermore, we found that domestic hydrogen production can fulfil between 20% and 77% of the demand in the Indonesian steel industry. In Indonesia's case, our results show that the share of H2-DRI-EAF could be between 29 and 38% and the share of hydrogen in the fuel mix could vary widely from 1.91% to 18.9%. The findings in this study could potentially be useful for the steel industry and policy makers alike to design a comprehensive decarbonization strategies.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.