{"title":"Green hydrogen blending in natural gas: A global review and a local analysis on Türkiye based on greenhouse gas emission reduction targets","authors":"Mehmet Melikoglu, Fatima Busra Aslan","doi":"10.1016/j.ijhydene.2024.11.452","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Türkiye's natural gas consumption till 2030 is forecasted based on the greenhouse gas emissions reduction targets announced by the Turkish President. Two novel semi-empirical per capita based models are generated for forecasting. It is estimated that Türkiye's natural gas consumption in 2030 could reach 65.5 billion m<sup>3</sup>, and at this level nearly 650 million m<sup>3</sup> of green hydrogen could be needed for 1.0% (v/v) blending. Root mean squared error (RMSE) and mean absolute percentage error (MAPE) values of forecast generated by Model 2 are estimated as 3.6 and 5.5%, respectively. These RMSE and MAPE values indicate high accuracy. The forecasting results of Model 2 are also compared with highly cited forecasts from the literature. The accuracy of fit with these forecasts changed between 90.7%–99.9%, which might be considered as an indication of model success. Finally, it is believed that this study could further be adapted by other researchers for estimating local or national natural gas consumption and potential green hydrogen requirements for blending conditional that historic geographical per capita data is available and associated addition/availability factors are calculated based on current circumstances.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 150-159"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051498","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Türkiye's natural gas consumption till 2030 is forecasted based on the greenhouse gas emissions reduction targets announced by the Turkish President. Two novel semi-empirical per capita based models are generated for forecasting. It is estimated that Türkiye's natural gas consumption in 2030 could reach 65.5 billion m3, and at this level nearly 650 million m3 of green hydrogen could be needed for 1.0% (v/v) blending. Root mean squared error (RMSE) and mean absolute percentage error (MAPE) values of forecast generated by Model 2 are estimated as 3.6 and 5.5%, respectively. These RMSE and MAPE values indicate high accuracy. The forecasting results of Model 2 are also compared with highly cited forecasts from the literature. The accuracy of fit with these forecasts changed between 90.7%–99.9%, which might be considered as an indication of model success. Finally, it is believed that this study could further be adapted by other researchers for estimating local or national natural gas consumption and potential green hydrogen requirements for blending conditional that historic geographical per capita data is available and associated addition/availability factors are calculated based on current circumstances.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.