Linnan Dong , Zhimin Ding , Bo Liang , Qiaomei Huang , Rujin Tian
{"title":"Twin-twin interaction behavior in tensile-deformed austenitic manganese steel","authors":"Linnan Dong , Zhimin Ding , Bo Liang , Qiaomei Huang , Rujin Tian","doi":"10.1016/j.matchar.2024.114582","DOIUrl":null,"url":null,"abstract":"<div><div>Electron back scatter diffraction instrument and high-resolution transmission electron microscope were used to observe and characterize the twin-twin interaction behavior in tensile-deformed 120Mn13 steel at the atomic scale. Here the whole twin-twin interaction behavior was divided into three processes and the deformation mechanisms of each process were revealed, including the interaction between the incident twin and the coherent twin boundary of the barrier twin, which can lead to a twinning or detwinning process of the barrier twin, the trigger formation of secondary twins and the formation of second order twins in the intersection region. Based on the Thomson tetrahedron, the dislocation movements in different twin-twin interaction processes were systematically described, and the possibility of dislocation reactions were discussed in energy. The interaction mechanism of the microscopic zero-stain twin (MZST) was proposed for the first time, and its differences from the classical twin-twin interaction mechanism were expounded. Present work further enriches the twin-twin interaction behavior in face centered cubic metallic materials. It can also guide the in-depth understanding of the classical twin-twin interaction behaviors and be used to explain the formation of classical secondary and second order twins.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114582"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032400963X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Electron back scatter diffraction instrument and high-resolution transmission electron microscope were used to observe and characterize the twin-twin interaction behavior in tensile-deformed 120Mn13 steel at the atomic scale. Here the whole twin-twin interaction behavior was divided into three processes and the deformation mechanisms of each process were revealed, including the interaction between the incident twin and the coherent twin boundary of the barrier twin, which can lead to a twinning or detwinning process of the barrier twin, the trigger formation of secondary twins and the formation of second order twins in the intersection region. Based on the Thomson tetrahedron, the dislocation movements in different twin-twin interaction processes were systematically described, and the possibility of dislocation reactions were discussed in energy. The interaction mechanism of the microscopic zero-stain twin (MZST) was proposed for the first time, and its differences from the classical twin-twin interaction mechanism were expounded. Present work further enriches the twin-twin interaction behavior in face centered cubic metallic materials. It can also guide the in-depth understanding of the classical twin-twin interaction behaviors and be used to explain the formation of classical secondary and second order twins.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.