Delamination defects in composite hydrogen storage cylinders: CT scanning and shearography measurement

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-30 DOI:10.1016/j.ijhydene.2024.11.447
Li Ma , Changchen Liu , Jiulin Han , Ange Wen , Baoqing Liu , Jinyang Zheng
{"title":"Delamination defects in composite hydrogen storage cylinders: CT scanning and shearography measurement","authors":"Li Ma ,&nbsp;Changchen Liu ,&nbsp;Jiulin Han ,&nbsp;Ange Wen ,&nbsp;Baoqing Liu ,&nbsp;Jinyang Zheng","doi":"10.1016/j.ijhydene.2024.11.447","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon fiber-reinforced composite hydrogen storage cylinder is a key component used in hydrogen fuel cell electric vehicles. However, some micro defects such as voids and delamination are inevitable during the manufacturing process. An efficient detection method for manufacturing defects is still lacking at present. In this work, industrial computerized tomography (CT) scanning was carried out and a large number of micro delamination with scattered sizes and random locations were found in the filament winding layer. Shearography technique based on digital speckle pattern interferometry (DSPI) was used to measure the surface deformation of the cylinders. It was found that the \"butterfly-shaped” interference fringes representing the anomalous responses from defects can be significantly observed at the pressure difference of 0.62%–0.69% working pressure. Also, the crack was found originated from the delamination defect with the most significant “butterfly-shaped” fringes, which leads to a large area of interlaminar destruction during the hydraulic bursting test.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 140-149"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051449","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon fiber-reinforced composite hydrogen storage cylinder is a key component used in hydrogen fuel cell electric vehicles. However, some micro defects such as voids and delamination are inevitable during the manufacturing process. An efficient detection method for manufacturing defects is still lacking at present. In this work, industrial computerized tomography (CT) scanning was carried out and a large number of micro delamination with scattered sizes and random locations were found in the filament winding layer. Shearography technique based on digital speckle pattern interferometry (DSPI) was used to measure the surface deformation of the cylinders. It was found that the "butterfly-shaped” interference fringes representing the anomalous responses from defects can be significantly observed at the pressure difference of 0.62%–0.69% working pressure. Also, the crack was found originated from the delamination defect with the most significant “butterfly-shaped” fringes, which leads to a large area of interlaminar destruction during the hydraulic bursting test.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合储氢气瓶的分层缺陷:CT扫描和剪切测量
碳纤维增强复合材料储氢筒是氢燃料电池电动汽车的关键部件。然而,在制造过程中,一些微小缺陷如空洞和分层是不可避免的。目前还缺乏一种有效的制造缺陷检测方法。本工作通过工业计算机断层扫描(CT)发现,在长丝缠绕层中存在大量尺寸分散、位置随机的微分层现象。采用基于数字散斑干涉法(DSPI)的剪切成像技术测量圆柱的表面变形。结果表明,在0.62% ~ 0.69%的工作压力差范围内,可以明显观察到代表缺陷异常响应的“蝴蝶形”干涉条纹。在水力爆破试验中,发现裂纹起源于分层缺陷,其“蝴蝶状”条纹最为明显,导致了大面积的层间破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Mesoporous silica-modified metal organic frameworks derived bimetallic electrocatalysts for oxygen reduction reaction in microbial fuel cells Adoption of hydrogen-based steel production under uncertain domestic hydrogen availability: An Indonesian case study Possible role of nanobubbles in the pulsed plasma production of hydrogen Enhanced thermophilic hydrogen production from co-substrate of pretreated waste activated sludge and food waste: Analysis from microbial growth and metabolism Site suitability analysis for green hydrogen production using multi-criteria decision-making methods: A case study in the state of Ceará, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1