Pedro Cortez Fetter Lopes , Federico Semeraro , André Maués Brabo Pereira , Ricardo Leiderman
{"title":"Enabling FEM-based absolute permeability estimation in giga-voxel porous media with a single GPU","authors":"Pedro Cortez Fetter Lopes , Federico Semeraro , André Maués Brabo Pereira , Ricardo Leiderman","doi":"10.1016/j.cma.2024.117559","DOIUrl":null,"url":null,"abstract":"<div><div>The characterization of porous media via digital testing usually relies on intensive numerical computations that can be parallelized in GPUs. For absolute permeability estimation, Stokes flow simulations are carried out at the micro-structure to recover velocity fields that are used in upscaling with Darcy’s law. Digital models of samples can be obtained via micro-computed tomography (<span><math><mi>μ</mi></math></span>CT) scans. As <span><math><mi>μ</mi></math></span>CT data is three-dimensional, meshes grow cubically with image dimensions, causing the numerical problem at hand to become compute- and memory-bound as either resolution improves or larger fields-of-view are considered. While the usual focus is on accelerating solvers, memory usage continues to be a significant limitation for analyses of representative volumes in relatively accessible hardware. In this work, we explore the possibility of implementing MINRES solvers in GPU that favor a reduction in memory allocation. These solvers are applied to matrix-free FEM-based permeability characterization of <span><math><mi>μ</mi></math></span>CT images. Our goal is to enable the study of 1000<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> voxel images in single GPU machines. Implementations that only require five, three, or two <span><math><mi>n</mi></math></span>-sized vectors of variables are presented, with <span><math><mi>n</mi></math></span> being the number of unknowns. Further, we employ a mesh numbering strategy that enables node-by-node massively parallel operations within a non-monolithic voxel-based pore space without storing connectivity tables. The proposed solvers, available through the open-source <span><span>chfem</span><svg><path></path></svg></span> software, are verified against analytical models for simple three-dimensional micro-structures, then are validated against numerical Digital Petrophysics benchmarks. A consumer-grade graphics card with 12GB of RAM is employed for the characterization of images with up to roughly 540 million voxels in a matter of tens of minutes. Stokes flow FEM-based simulations in meshes with 449 million degrees-of-freedom (DOFs) are carried out in 9 to 15 min, allocating less than 10GB in global memory. Finally, simulations on three 1000<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> carbon fiber domains, amounting to more than 3.7 billion DOFs, were run on a high-end GPU with 80GB of RAM in under 2.5 h, achieving very close agreement with flow-tube permeability experiments.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"434 ","pages":"Article 117559"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524008132","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The characterization of porous media via digital testing usually relies on intensive numerical computations that can be parallelized in GPUs. For absolute permeability estimation, Stokes flow simulations are carried out at the micro-structure to recover velocity fields that are used in upscaling with Darcy’s law. Digital models of samples can be obtained via micro-computed tomography (CT) scans. As CT data is three-dimensional, meshes grow cubically with image dimensions, causing the numerical problem at hand to become compute- and memory-bound as either resolution improves or larger fields-of-view are considered. While the usual focus is on accelerating solvers, memory usage continues to be a significant limitation for analyses of representative volumes in relatively accessible hardware. In this work, we explore the possibility of implementing MINRES solvers in GPU that favor a reduction in memory allocation. These solvers are applied to matrix-free FEM-based permeability characterization of CT images. Our goal is to enable the study of 1000 voxel images in single GPU machines. Implementations that only require five, three, or two -sized vectors of variables are presented, with being the number of unknowns. Further, we employ a mesh numbering strategy that enables node-by-node massively parallel operations within a non-monolithic voxel-based pore space without storing connectivity tables. The proposed solvers, available through the open-source chfem software, are verified against analytical models for simple three-dimensional micro-structures, then are validated against numerical Digital Petrophysics benchmarks. A consumer-grade graphics card with 12GB of RAM is employed for the characterization of images with up to roughly 540 million voxels in a matter of tens of minutes. Stokes flow FEM-based simulations in meshes with 449 million degrees-of-freedom (DOFs) are carried out in 9 to 15 min, allocating less than 10GB in global memory. Finally, simulations on three 1000 carbon fiber domains, amounting to more than 3.7 billion DOFs, were run on a high-end GPU with 80GB of RAM in under 2.5 h, achieving very close agreement with flow-tube permeability experiments.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.