Lei Zhang , Chanwook Park , Thomas J.R. Hughes , Wing Kam Liu
{"title":"Multi-patch Isogeometric convolution hierarchical deep-learning neural network","authors":"Lei Zhang , Chanwook Park , Thomas J.R. Hughes , Wing Kam Liu","doi":"10.1016/j.cma.2024.117582","DOIUrl":null,"url":null,"abstract":"<div><div>A seamless integration of neural networks with Isogeometric Analysis (IGA) was first introduced in [1] under the name of Hierarchical Deep-learning Neural Network (HiDeNN) and has systematically evolved into Isogeometric Convolution HiDeNN (in short, C-IGA) [2]. C-IGA achieves higher order approximations without increasing the degree of freedom. Due to the Kronecker delta property of C-IGA shape functions, one can refine the mesh in the physical domain like standard finite element method (FEM) while maintaining the exact geometrical mapping of IGA. In this article, C-IGA theory is generalized for multi-CAD-patch systems with a mathematical investigation of the compatibility conditions at patch interfaces and convergence of error estimates. Two compatibility conditions (nodal compatibility and <span><math><msup><mrow><mi>G</mi></mrow><mn>0</mn></msup></math></span> (i.e., global <span><math><msup><mrow><mi>C</mi></mrow><mn>0</mn></msup></math></span>) compatibility) are presented and validated through numerical examples.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"434 ","pages":"Article 117582"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524008363","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A seamless integration of neural networks with Isogeometric Analysis (IGA) was first introduced in [1] under the name of Hierarchical Deep-learning Neural Network (HiDeNN) and has systematically evolved into Isogeometric Convolution HiDeNN (in short, C-IGA) [2]. C-IGA achieves higher order approximations without increasing the degree of freedom. Due to the Kronecker delta property of C-IGA shape functions, one can refine the mesh in the physical domain like standard finite element method (FEM) while maintaining the exact geometrical mapping of IGA. In this article, C-IGA theory is generalized for multi-CAD-patch systems with a mathematical investigation of the compatibility conditions at patch interfaces and convergence of error estimates. Two compatibility conditions (nodal compatibility and (i.e., global ) compatibility) are presented and validated through numerical examples.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.