Multi-patch Isogeometric convolution hierarchical deep-learning neural network

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-11-30 DOI:10.1016/j.cma.2024.117582
Lei Zhang , Chanwook Park , Thomas J.R. Hughes , Wing Kam Liu
{"title":"Multi-patch Isogeometric convolution hierarchical deep-learning neural network","authors":"Lei Zhang ,&nbsp;Chanwook Park ,&nbsp;Thomas J.R. Hughes ,&nbsp;Wing Kam Liu","doi":"10.1016/j.cma.2024.117582","DOIUrl":null,"url":null,"abstract":"<div><div>A seamless integration of neural networks with Isogeometric Analysis (IGA) was first introduced in [1] under the name of Hierarchical Deep-learning Neural Network (HiDeNN) and has systematically evolved into Isogeometric Convolution HiDeNN (in short, C-IGA) [2]. C-IGA achieves higher order approximations without increasing the degree of freedom. Due to the Kronecker delta property of C-IGA shape functions, one can refine the mesh in the physical domain like standard finite element method (FEM) while maintaining the exact geometrical mapping of IGA. In this article, C-IGA theory is generalized for multi-CAD-patch systems with a mathematical investigation of the compatibility conditions at patch interfaces and convergence of error estimates. Two compatibility conditions (nodal compatibility and <span><math><msup><mrow><mi>G</mi></mrow><mn>0</mn></msup></math></span> (i.e., global <span><math><msup><mrow><mi>C</mi></mrow><mn>0</mn></msup></math></span>) compatibility) are presented and validated through numerical examples.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"434 ","pages":"Article 117582"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524008363","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A seamless integration of neural networks with Isogeometric Analysis (IGA) was first introduced in [1] under the name of Hierarchical Deep-learning Neural Network (HiDeNN) and has systematically evolved into Isogeometric Convolution HiDeNN (in short, C-IGA) [2]. C-IGA achieves higher order approximations without increasing the degree of freedom. Due to the Kronecker delta property of C-IGA shape functions, one can refine the mesh in the physical domain like standard finite element method (FEM) while maintaining the exact geometrical mapping of IGA. In this article, C-IGA theory is generalized for multi-CAD-patch systems with a mathematical investigation of the compatibility conditions at patch interfaces and convergence of error estimates. Two compatibility conditions (nodal compatibility and G0 (i.e., global C0) compatibility) are presented and validated through numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Integration of additive manufacturing process-induced material characteristics into topology optimization Multi-patch Isogeometric convolution hierarchical deep-learning neural network Data-free non-intrusive model reduction for nonlinear finite element models via spectral submanifolds Enabling FEM-based absolute permeability estimation in giga-voxel porous media with a single GPU Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1