Structural optimization of separation layer and porous PES substrate for enhanced pervaporation desalination performance

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2024-11-24 DOI:10.1016/j.cep.2024.110083
Thi Mar , Da Yin , Ziyu Fang , Tao Wang , Xi Dai , Bing Cao , Rui Zhang
{"title":"Structural optimization of separation layer and porous PES substrate for enhanced pervaporation desalination performance","authors":"Thi Mar ,&nbsp;Da Yin ,&nbsp;Ziyu Fang ,&nbsp;Tao Wang ,&nbsp;Xi Dai ,&nbsp;Bing Cao ,&nbsp;Rui Zhang","doi":"10.1016/j.cep.2024.110083","DOIUrl":null,"url":null,"abstract":"<div><div>Pervaporation membranes with water-selective properties hold great potential for desalination and brine concentration applications. In this study, a modified PES porous membrane with smaller pore sizes and enhanced interfacial support was used as the substrate. Ultrathin selective layers were fabricated on its surface via atomized spray coating, resulting in high-performance pervaporation membranes for desalination analysis. The study compares the effects of PVA and PEI on membrane performance under different crosslinking systems. At 82 °C, using a 3.5 wt.% sodium chloride solution, the PES composite membrane with a PEI/SPTA selective layer achieved a maximum flux of 180.35 ± 13.8 kg m<sup>-</sup>² h⁻¹, with a salt rejection rate of 99.97% ± 0.2. Even at a higher brine concentration of 20 wt.%, the membrane maintained a flux of 49.77 ± 7.3 kg m<sup>-</sup>² h⁻¹ at 72 °C. The membrane's high salt rejection and stable performance under complex operating conditions demonstrate that pervaporation composite membranes prepared with low-surface-porosity substrates offer enhanced cycle stability and industrial potential in real-world desalination and concentration applications.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"208 ","pages":"Article 110083"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124004215","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Pervaporation membranes with water-selective properties hold great potential for desalination and brine concentration applications. In this study, a modified PES porous membrane with smaller pore sizes and enhanced interfacial support was used as the substrate. Ultrathin selective layers were fabricated on its surface via atomized spray coating, resulting in high-performance pervaporation membranes for desalination analysis. The study compares the effects of PVA and PEI on membrane performance under different crosslinking systems. At 82 °C, using a 3.5 wt.% sodium chloride solution, the PES composite membrane with a PEI/SPTA selective layer achieved a maximum flux of 180.35 ± 13.8 kg m-² h⁻¹, with a salt rejection rate of 99.97% ± 0.2. Even at a higher brine concentration of 20 wt.%, the membrane maintained a flux of 49.77 ± 7.3 kg m-² h⁻¹ at 72 °C. The membrane's high salt rejection and stable performance under complex operating conditions demonstrate that pervaporation composite membranes prepared with low-surface-porosity substrates offer enhanced cycle stability and industrial potential in real-world desalination and concentration applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Stepping up: From lab scale to industrial processes Nanoparticle deagglomeration driven by a high shear mixer and intensification of low-speed stirring in a viscous system Technology for removing PM2.5 in clean coal processes Structural optimization of separation layer and porous PES substrate for enhanced pervaporation desalination performance Performance study of lithium ion sieve composite in high gravity for Li+ adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1