CaLES: A GPU-accelerated solver for large-eddy simulation of wall-bounded flows

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2025-02-14 DOI:10.1016/j.cpc.2025.109546
Maochao Xiao , Alessandro Ceci , Pedro Costa , Johan Larsson , Sergio Pirozzoli
{"title":"CaLES: A GPU-accelerated solver for large-eddy simulation of wall-bounded flows","authors":"Maochao Xiao ,&nbsp;Alessandro Ceci ,&nbsp;Pedro Costa ,&nbsp;Johan Larsson ,&nbsp;Sergio Pirozzoli","doi":"10.1016/j.cpc.2025.109546","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce CaLES, a GPU-accelerated finite-difference solver designed for large-eddy simulations (LES) of incompressible wall-bounded flows in massively parallel environments. Built upon the existing direct numerical simulation (DNS) solver CaNS, CaLES relies on low-storage, third-order Runge-Kutta schemes for temporal discretization, with the option to treat viscous terms via an implicit Crank-Nicolson scheme in one or three directions. A fast direct solver, based on eigenfunction expansions, is used to solve the discretized Poisson/Helmholtz equations. For turbulence modeling, the classical Smagorinsky model with van Driest near-wall damping and the dynamic Smagorinsky model are implemented, along with a logarithmic law wall model. GPU acceleration is achieved through OpenACC directives, following CaNS-2.3.0. Performance assessments were conducted on the Leonardo cluster at CINECA, Italy. Each node is equipped with one Intel Xeon Platinum 8358 CPU (2.60 GHz, 32 cores) and four NVIDIA A100 GPUs (64 GB HBM2e), interconnected via NVLink 3.0 (200 GB/s). The inter-node communication bandwidth is 25 GB/s, supported by a DragonFly+ network architecture with NVIDIA Mellanox InfiniBand HDR. Results indicate that the computational speed on a single GPU is equivalent to approximately 15 CPU nodes, depending on the treatment of viscous terms and the subgrid-scale model, and that the solver efficiently scales across multiple GPUs. The predictive capability of CaLES has been tested using multiple flow cases, including decaying isotropic turbulence, turbulent channel flow, and turbulent duct flow. The high computational efficiency of the solver enables grid convergence studies on extremely fine grids, pinpointing non-monotonic grid convergence for wall-modeled LES.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"310 ","pages":"Article 109546"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525000499","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce CaLES, a GPU-accelerated finite-difference solver designed for large-eddy simulations (LES) of incompressible wall-bounded flows in massively parallel environments. Built upon the existing direct numerical simulation (DNS) solver CaNS, CaLES relies on low-storage, third-order Runge-Kutta schemes for temporal discretization, with the option to treat viscous terms via an implicit Crank-Nicolson scheme in one or three directions. A fast direct solver, based on eigenfunction expansions, is used to solve the discretized Poisson/Helmholtz equations. For turbulence modeling, the classical Smagorinsky model with van Driest near-wall damping and the dynamic Smagorinsky model are implemented, along with a logarithmic law wall model. GPU acceleration is achieved through OpenACC directives, following CaNS-2.3.0. Performance assessments were conducted on the Leonardo cluster at CINECA, Italy. Each node is equipped with one Intel Xeon Platinum 8358 CPU (2.60 GHz, 32 cores) and four NVIDIA A100 GPUs (64 GB HBM2e), interconnected via NVLink 3.0 (200 GB/s). The inter-node communication bandwidth is 25 GB/s, supported by a DragonFly+ network architecture with NVIDIA Mellanox InfiniBand HDR. Results indicate that the computational speed on a single GPU is equivalent to approximately 15 CPU nodes, depending on the treatment of viscous terms and the subgrid-scale model, and that the solver efficiently scales across multiple GPUs. The predictive capability of CaLES has been tested using multiple flow cases, including decaying isotropic turbulence, turbulent channel flow, and turbulent duct flow. The high computational efficiency of the solver enables grid convergence studies on extremely fine grids, pinpointing non-monotonic grid convergence for wall-modeled LES.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
Galactic distribution of supernovae and OB associations curvedSpaceSim: A framework for simulating particles interacting along geodesics JAX-based aeroelastic simulation engine for differentiable aircraft dynamics CaLES: A GPU-accelerated solver for large-eddy simulation of wall-bounded flows Enhancing precision in J/ψ mass estimation: A study of ensemble and deep learning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1