ToMSGKpoint: A user-friendly package for computing symmetry transformation properties of electronic eigenstates of nonmagnetic and magnetic crystalline materials

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2025-02-18 DOI:10.1016/j.cpc.2025.109510
Liangliang Huang , Xiangang Wan , Feng Tang
{"title":"ToMSGKpoint: A user-friendly package for computing symmetry transformation properties of electronic eigenstates of nonmagnetic and magnetic crystalline materials","authors":"Liangliang Huang ,&nbsp;Xiangang Wan ,&nbsp;Feng Tang","doi":"10.1016/j.cpc.2025.109510","DOIUrl":null,"url":null,"abstract":"<div><div>The calculation of irreducible (co-)representations of energy bands at high-symmetry points (HSPs) is essential for high-throughput research on topological materials based on symmetry-indicators or topological quantum chemistry. However, existing computational packages usually require transforming crystal structures adapted to specific conventions, thus hindering extensive application, especially to materials whose symmetries are yet to be identified. To address this issue, we developed a Mathematica package, <span>ToMSGKpoint</span>, capable of determining the little groups and irreducible (co-)representations of little groups of HSPs, high-symmetry lines (HSLs), and high-symmetry planes (HSPLs) for any nonmagnetic and magnetic crystalline materials in two and three dimensions, with or without considering spin-orbit coupling. To the best of our knowledge, this is the first package to achieve such functionality. The package also provides magnetic space group operations, supports the analysis of irreducible (co-)representations of energy bands at HSPs, HSLs, and HSPLs using electronic wavefunctions obtained from <em>ab initio</em> calculations interfaced with VASP. Designed for user convenience, the package generates results in a few simple steps and presents all relevant information in a clear tabular format. Its versatility is demonstrated through applications to nonmagnetic topological insulator Bi<sub>2</sub>Se<sub>3</sub> and Dirac semimetal Na<sub>3</sub>Bi, as well as the antiferromagnetic topological material MnBi<sub>2</sub>Te<sub>4</sub>. Suitable for any crystal structure, this package can be conveniently applied in a streamlined study once magnetic space group varies with various symmetry-breakings caused by phase transitions.</div></div><div><h3>Program summary</h3><div><em>Program Title:</em> <span>ToMSGKpoint</span></div><div><em>Developer's repository link:</em> <span><span>https://github.com/FengTang1990/ToMSGKpoint</span><svg><path></path></svg></span></div><div><em>Licensing provisions:</em> GPLv3</div><div><em>Programming language:</em> Wolfram</div><div><em>Nature of problem:</em> The package <span>ToMSGKpoint</span> provides magnetic space group operations for any crystal structure, along with the little groups of high-symmetry points, lines, and planes, and their corresponding irreducible (co-)representations. It also facilitates the transformation from a customized crystal structure to the Bradley-Cracknell convention. Furthermore, based on electronic wavefunctions obtained from VASP calculations, the package computes the irreducible (co-)representations of energy bands at high-symmetry points, lines, and planes.</div><div><em>Solution method:</em> In order to calculate the irreducible (co-)representations of the little groups at high-symmetry points, lines, and planes, we first obtain the transformation from the customized crystal structure convention to the Bradley-Cracknell convention. Using this transformation, we derive the irreducible (co-)representations for the little groups in the customized crystal structure convention based on those in the Bradley-Cracknell convention.</div><div><em>Additional comments including restrictions and unusual features:</em> The current program that we are utilizing is specifically designed to read electronic wave functions that have been meticulously calculated by VASP. Unfortunately, this means that it is not compatible with other first-principles computational software, such as Quantum ESPRESSO or Gaussian. Additionally, it's important to note that this program does not have the capability to directly compute the irreducible (co-)representations of the energy bands in phonon materials.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"311 ","pages":"Article 109510"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001046552500013X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The calculation of irreducible (co-)representations of energy bands at high-symmetry points (HSPs) is essential for high-throughput research on topological materials based on symmetry-indicators or topological quantum chemistry. However, existing computational packages usually require transforming crystal structures adapted to specific conventions, thus hindering extensive application, especially to materials whose symmetries are yet to be identified. To address this issue, we developed a Mathematica package, ToMSGKpoint, capable of determining the little groups and irreducible (co-)representations of little groups of HSPs, high-symmetry lines (HSLs), and high-symmetry planes (HSPLs) for any nonmagnetic and magnetic crystalline materials in two and three dimensions, with or without considering spin-orbit coupling. To the best of our knowledge, this is the first package to achieve such functionality. The package also provides magnetic space group operations, supports the analysis of irreducible (co-)representations of energy bands at HSPs, HSLs, and HSPLs using electronic wavefunctions obtained from ab initio calculations interfaced with VASP. Designed for user convenience, the package generates results in a few simple steps and presents all relevant information in a clear tabular format. Its versatility is demonstrated through applications to nonmagnetic topological insulator Bi2Se3 and Dirac semimetal Na3Bi, as well as the antiferromagnetic topological material MnBi2Te4. Suitable for any crystal structure, this package can be conveniently applied in a streamlined study once magnetic space group varies with various symmetry-breakings caused by phase transitions.

Program summary

Program Title: ToMSGKpoint
Developer's repository link: https://github.com/FengTang1990/ToMSGKpoint
Licensing provisions: GPLv3
Programming language: Wolfram
Nature of problem: The package ToMSGKpoint provides magnetic space group operations for any crystal structure, along with the little groups of high-symmetry points, lines, and planes, and their corresponding irreducible (co-)representations. It also facilitates the transformation from a customized crystal structure to the Bradley-Cracknell convention. Furthermore, based on electronic wavefunctions obtained from VASP calculations, the package computes the irreducible (co-)representations of energy bands at high-symmetry points, lines, and planes.
Solution method: In order to calculate the irreducible (co-)representations of the little groups at high-symmetry points, lines, and planes, we first obtain the transformation from the customized crystal structure convention to the Bradley-Cracknell convention. Using this transformation, we derive the irreducible (co-)representations for the little groups in the customized crystal structure convention based on those in the Bradley-Cracknell convention.
Additional comments including restrictions and unusual features: The current program that we are utilizing is specifically designed to read electronic wave functions that have been meticulously calculated by VASP. Unfortunately, this means that it is not compatible with other first-principles computational software, such as Quantum ESPRESSO or Gaussian. Additionally, it's important to note that this program does not have the capability to directly compute the irreducible (co-)representations of the energy bands in phonon materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
Galactic distribution of supernovae and OB associations ToMSGKpoint: A user-friendly package for computing symmetry transformation properties of electronic eigenstates of nonmagnetic and magnetic crystalline materials curvedSpaceSim: A framework for simulating particles interacting along geodesics JAX-based aeroelastic simulation engine for differentiable aircraft dynamics CaLES: A GPU-accelerated solver for large-eddy simulation of wall-bounded flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1