Thermal conductivity predictions in monolayer MoSi2N4: Integrating neural network potentials with phonon scattering analysis

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-11-28 DOI:10.1016/j.commatsci.2024.113543
Yunzhen Du , Jiaojiao Cheng , Jizheng Duan , Meiling Qi , Yanwei Chen , Yuan Yao , Wenshan Duan , Lei Yang , Sheng Zhang , Ping Lin
{"title":"Thermal conductivity predictions in monolayer MoSi2N4: Integrating neural network potentials with phonon scattering analysis","authors":"Yunzhen Du ,&nbsp;Jiaojiao Cheng ,&nbsp;Jizheng Duan ,&nbsp;Meiling Qi ,&nbsp;Yanwei Chen ,&nbsp;Yuan Yao ,&nbsp;Wenshan Duan ,&nbsp;Lei Yang ,&nbsp;Sheng Zhang ,&nbsp;Ping Lin","doi":"10.1016/j.commatsci.2024.113543","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) materials, known for their exceptional thermal conductivity and mechanical flexibility, have emerged as promising candidates for thermal management applications. Recently, increasing attention has been given to investigating the lattice thermal conductivity of these materials. While traditional methods combining density functional theory (DFT) with the Boltzmann transport equation (BTE) can produce accurate results, these approaches are computationally expensive and demand substantial resources. To address this challenge, we employed machine learning to successfully model the interatomic potential of monolayer MoSi<sub>2</sub>N<sub>4</sub>. This neural network potential (NNP), combined with BTE, facilitated the theoretical calculation of MoSi<sub>2</sub>N<sub>4</sub>′s thermal conductivity. Using NNP, we efficiently and accurately calculated the lattice thermal conductivity of MoSi<sub>2</sub>N<sub>4</sub>, highlighting the importance of selecting an appropriate interaction cutoff distance to ensure calculation accuracy. Furthermore, using this NNP, we investigated how four-phonon scattering influences the heat conduction properties of MoSi<sub>2</sub>N<sub>4</sub>, thereby strengthening our comprehension of phonon scattering dynamics. This study not only optimized computational efficiency but also provided fresh perspectives on the heat transfer mechanisms in complex 2D materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113543"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562400764X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials, known for their exceptional thermal conductivity and mechanical flexibility, have emerged as promising candidates for thermal management applications. Recently, increasing attention has been given to investigating the lattice thermal conductivity of these materials. While traditional methods combining density functional theory (DFT) with the Boltzmann transport equation (BTE) can produce accurate results, these approaches are computationally expensive and demand substantial resources. To address this challenge, we employed machine learning to successfully model the interatomic potential of monolayer MoSi2N4. This neural network potential (NNP), combined with BTE, facilitated the theoretical calculation of MoSi2N4′s thermal conductivity. Using NNP, we efficiently and accurately calculated the lattice thermal conductivity of MoSi2N4, highlighting the importance of selecting an appropriate interaction cutoff distance to ensure calculation accuracy. Furthermore, using this NNP, we investigated how four-phonon scattering influences the heat conduction properties of MoSi2N4, thereby strengthening our comprehension of phonon scattering dynamics. This study not only optimized computational efficiency but also provided fresh perspectives on the heat transfer mechanisms in complex 2D materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维(2D)材料以其优异的导热性和机械柔韧性而著称,已成为热管理应用的理想候选材料。最近,人们越来越关注研究这些材料的晶格热导率。虽然结合密度泛函理论(DFT)和玻尔兹曼输运方程(BTE)的传统方法可以得出精确的结果,但这些方法计算成本高,需要大量资源。为了应对这一挑战,我们利用机器学习成功地建立了单层 MoSi2N4 的原子间势能模型。这种神经网络势能(NNP)与 BTE 相结合,促进了 MoSi2N4 导热性的理论计算。利用神经网络势,我们高效、准确地计算出了 MoSi2N4 的晶格热导率,突出了选择适当的相互作用截止距离对确保计算精度的重要性。此外,我们还利用该 NNP 研究了四声子散射如何影响 MoSi2N4 的热传导特性,从而加强了我们对声子散射动力学的理解。这项研究不仅优化了计算效率,还为复杂二维材料的传热机制提供了全新视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Study of ReaxFF molecular dynamics simulation about chemical reactions mechanisms of magnesium-aluminium spinel polishing Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions Ab initio study of the laser-induced ultrafast spin dynamics on Ni4@C40H34 carbon cross Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1