{"title":"Asymmetric full-state constrained attitude control for a flexible agile satellite with multiple disturbances and uncertainties","authors":"Youxue Zhao , Zhenxin Feng , Jun Zhou , He Huang","doi":"10.1016/j.ast.2024.109767","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an asymmetric full-state constrained attitude control method for a flexible agile satellite with multiple disturbances and uncertainties is proposed. Both the attitudes and angular velocities of the flexible agile satellite are guaranteed in the asymmetric/symmetric bounds by utilizing the time-varying integral barrier Lyapunov function (TVIBLF) and constant integral barrier Lyapunov function (IBLF) respectively. Compared with the existing error-based barrier Lyapunov functions, the asymmetric TVIBLF does not need error transformation, relaxes the conservation of the initial requirements, and has more compatibility. Furthermore, the proposed asymmetric TVIBLF can deal with the asymmetric time-varying constraints without loss of generality. In addition, the high-frequency flexible vibrations, inertial uncertainties, and unknown external disturbance torques affected on the agile satellite are considered respectively. On one hand, a modal observer is utilized to suppress the high-frequency flexible vibration effects on the attitudes. On the other hand, the inertial uncertainties and unknown external disturbance torques are estimated with a multi-variable nonlinear disturbance observer. Therefore, both the asymmetric full-state constrained performances and robustness of the attitude control system for the flexible agile satellite are achieved. The stability of the closed-loop system is proved and numerical simulations have validated the effectiveness of the proposed method.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"156 ","pages":"Article 109767"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008964","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an asymmetric full-state constrained attitude control method for a flexible agile satellite with multiple disturbances and uncertainties is proposed. Both the attitudes and angular velocities of the flexible agile satellite are guaranteed in the asymmetric/symmetric bounds by utilizing the time-varying integral barrier Lyapunov function (TVIBLF) and constant integral barrier Lyapunov function (IBLF) respectively. Compared with the existing error-based barrier Lyapunov functions, the asymmetric TVIBLF does not need error transformation, relaxes the conservation of the initial requirements, and has more compatibility. Furthermore, the proposed asymmetric TVIBLF can deal with the asymmetric time-varying constraints without loss of generality. In addition, the high-frequency flexible vibrations, inertial uncertainties, and unknown external disturbance torques affected on the agile satellite are considered respectively. On one hand, a modal observer is utilized to suppress the high-frequency flexible vibration effects on the attitudes. On the other hand, the inertial uncertainties and unknown external disturbance torques are estimated with a multi-variable nonlinear disturbance observer. Therefore, both the asymmetric full-state constrained performances and robustness of the attitude control system for the flexible agile satellite are achieved. The stability of the closed-loop system is proved and numerical simulations have validated the effectiveness of the proposed method.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.