Machine learning approach for predicting early-age thermal cracking potential in concrete bridge piers

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Forces in mechanics Pub Date : 2024-12-01 DOI:10.1016/j.finmec.2024.100297
Tu Anh Do, Ba-Anh Le
{"title":"Machine learning approach for predicting early-age thermal cracking potential in concrete bridge piers","authors":"Tu Anh Do,&nbsp;Ba-Anh Le","doi":"10.1016/j.finmec.2024.100297","DOIUrl":null,"url":null,"abstract":"<div><div>In concrete construction, early-age thermal cracks in foundations, abutments, piers, and slabs can arise from non-uniform temperature distribution due to heat from cement hydration. These cracks negatively impact the integrity, load-bearing capacity, and service life of the concrete structures. This paper investigates the application of machine learning (ML) models to predict early-age thermal cracking in concrete bridge piers. The study aims to develop models to forecast thermal cracking potential (<em>η<sub>max</sub></em>) and estimate the timing of potential cracking (<em>t</em>) based on a dataset of various cross-sectional bridge piers and typical tropical temperatures. Four ML models—Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Artificial Neural Network (ANN), and Genetic Programming (GP)—were trained on 759 samples. The dataset, prepared using the EACTSA program, included parameters like cross-sectional dimensions, ambient temperature, and initial concrete temperature, with <em>η<sub>max</sub></em> and <em>t</em> as outputs. Results show that all the ML models achieved high prediction accuracy with R² scores over 0.96. The GP symbolic equations offer transparency and practical implementation. Compared to conventional methods, ML models provide a rapid, effective tool to optimize concrete member dimensions, formwork removal timing, and control concrete temperature, mitigating early-age thermal cracking risk.</div></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"17 ","pages":"Article 100297"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266635972400043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In concrete construction, early-age thermal cracks in foundations, abutments, piers, and slabs can arise from non-uniform temperature distribution due to heat from cement hydration. These cracks negatively impact the integrity, load-bearing capacity, and service life of the concrete structures. This paper investigates the application of machine learning (ML) models to predict early-age thermal cracking in concrete bridge piers. The study aims to develop models to forecast thermal cracking potential (ηmax) and estimate the timing of potential cracking (t) based on a dataset of various cross-sectional bridge piers and typical tropical temperatures. Four ML models—Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Artificial Neural Network (ANN), and Genetic Programming (GP)—were trained on 759 samples. The dataset, prepared using the EACTSA program, included parameters like cross-sectional dimensions, ambient temperature, and initial concrete temperature, with ηmax and t as outputs. Results show that all the ML models achieved high prediction accuracy with R² scores over 0.96. The GP symbolic equations offer transparency and practical implementation. Compared to conventional methods, ML models provide a rapid, effective tool to optimize concrete member dimensions, formwork removal timing, and control concrete temperature, mitigating early-age thermal cracking risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测混凝土桥墩早期热裂潜力的机器学习方法
在混凝土施工中,由于水泥水化产生的热量导致温度分布不均匀,地基、桥台、桥墩和楼板中的早期热裂缝可能会产生。这些裂缝对混凝土结构的完整性、承载能力和使用寿命产生负面影响。本文研究了机器学习(ML)模型在混凝土桥墩早期热裂预测中的应用。基于不同截面桥墩和典型热带温度的数据集,建立了预测热裂潜力(ηmax)和估计潜在裂缝时间(t)的模型。在759个样本上训练了支持向量机(SVM)、极端梯度增强(XGB)、人工神经网络(ANN)和遗传规划(GP)四种ML模型。使用EACTSA程序编制的数据集包括截面尺寸、环境温度和初始混凝土温度等参数,输出ηmax和t。结果表明,所有ML模型均具有较高的预测精度,R²分数均在0.96以上。GP符号方程提供了透明性和实用性。与传统方法相比,ML模型提供了一种快速有效的工具,可以优化混凝土构件尺寸,拆除模板的时间,控制混凝土温度,降低早期热裂的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Machine learning approach for predicting early-age thermal cracking potential in concrete bridge piers Theoretical and numerical stress analysis in the cam of a medium voltage switchgear vacuum circuit breaker supported by image processing of deformation Quasi-static puncture shear loading characteristics of GLARE/nanoclay laminates with various indenters Free vibration analysis of a functionally graded porous nanoplate in a hygrothermal environment resting on an elastic foundation Enhanced meshfree method with nodal integration for analysis of functionally graded material sandwich curved shells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1