A vegetation strategy to balance the hazardous level of microplastics in the land–sea interface through rhizosphere remediation

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2024-12-01 DOI:10.1016/j.ecolind.2024.112876
Weifeng Ruan , Yanqin Peng , Xi Ling , Bailun Yu , Yiping Tai , Nora Fung-Yee Tam , Yunv Dai , Yang Yang
{"title":"A vegetation strategy to balance the hazardous level of microplastics in the land–sea interface through rhizosphere remediation","authors":"Weifeng Ruan ,&nbsp;Yanqin Peng ,&nbsp;Xi Ling ,&nbsp;Bailun Yu ,&nbsp;Yiping Tai ,&nbsp;Nora Fung-Yee Tam ,&nbsp;Yunv Dai ,&nbsp;Yang Yang","doi":"10.1016/j.ecolind.2024.112876","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastic (MP) pollution is an emerging threat to the natural environment and has become a global problem. Plants have been used to remove heavy metals, toxic organic pollutants, and MPs from contaminated environments. However, current research on the interaction between MPs and plants has focused on the food safety evaluation of terrestrial plants, such as crops and vegetables. There are, consequently, limited studies on aquatic plants, particularly those at land–sea interfaces, and their remediation potential. To address this research gap, the present study employed a bibliometric analysis and statistics from <em>Web of Science</em> (<em>WoS</em>) data from 2017 to 2023 to detail the interactions between MPs and plants. Because the study of aquatic plants was far less extensive than that of terrestrial plants, there was a need to draw analogies regarding how different plant species interact with various microplastics. This primarily pertains to the following aspects: direct and indirect effects of MPs on plants (including combined pollution), which included growth and development; nutrient intake; and physiological, biochemical, and genetic functions. The growth environments and physiological structures of aquatic plants and terrestrial plants differed, resulted in a greater potential for the root systems of aquatic plants to capture MPs. The impacts of MPs on the microbial processes in rhizospheres and phyllospheres in aquatic plants were also assessed because these plants are often used to remediate contaminated environments and wastewater treatment in the form of natural and constructed wetlands. Therefore, we proposed the potential of phytoremediation, particularly by aquatic plants, and future research directions related to MPs in this study.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112876"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24013335","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic (MP) pollution is an emerging threat to the natural environment and has become a global problem. Plants have been used to remove heavy metals, toxic organic pollutants, and MPs from contaminated environments. However, current research on the interaction between MPs and plants has focused on the food safety evaluation of terrestrial plants, such as crops and vegetables. There are, consequently, limited studies on aquatic plants, particularly those at land–sea interfaces, and their remediation potential. To address this research gap, the present study employed a bibliometric analysis and statistics from Web of Science (WoS) data from 2017 to 2023 to detail the interactions between MPs and plants. Because the study of aquatic plants was far less extensive than that of terrestrial plants, there was a need to draw analogies regarding how different plant species interact with various microplastics. This primarily pertains to the following aspects: direct and indirect effects of MPs on plants (including combined pollution), which included growth and development; nutrient intake; and physiological, biochemical, and genetic functions. The growth environments and physiological structures of aquatic plants and terrestrial plants differed, resulted in a greater potential for the root systems of aquatic plants to capture MPs. The impacts of MPs on the microbial processes in rhizospheres and phyllospheres in aquatic plants were also assessed because these plants are often used to remediate contaminated environments and wastewater treatment in the form of natural and constructed wetlands. Therefore, we proposed the potential of phytoremediation, particularly by aquatic plants, and future research directions related to MPs in this study.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Improving ecosystem respiration estimates for CO2 flux partitioning by discriminating water and temperature controls on above- and below-ground sources Evaluating the performance of spectral indices and meteorological variables as indicators of live fuel moisture content in Mediterranean shrublands Importance of the interplay between land cover and topography in modeling habitat selection Inequity in accessibility to urban parks in environmental gentrification areas based on Multi-G3SFCA: A case study of Wuhan’s main urban districts Comprehensive evaluation and scenario simulation for determining the optimal conservation priority of ecological services in Danjiangkou Reservoir Area, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1