In Vitro Osteogenic Response to Copper-Doped Eggshell-Derived Hyroxyapatite With Macrophage Supplements

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part A Pub Date : 2024-11-29 DOI:10.1002/jbm.a.37838
Tejal V. Patil, Dinesh K. Patel, Ki-Taek Lim
{"title":"In Vitro Osteogenic Response to Copper-Doped Eggshell-Derived Hyroxyapatite With Macrophage Supplements","authors":"Tejal V. Patil,&nbsp;Dinesh K. Patel,&nbsp;Ki-Taek Lim","doi":"10.1002/jbm.a.37838","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The high bioactivity and biocompatibility of hydroxyapatite (HAP) make it a useful bone graft material for bone tissue engineering. However, the development superior osteoconductive and osteoinductive materials for bone regeneration remains a challenge. To overcome these constraints, Cu-doped hydroxyapatite (HAP(Cu)) from waste eggshells has been produced for bone tissue engineering. The materials produced were characterized using Fourier transform infrared spectroscopy, x-ray diffraction, and photoelectron spectroscopy. The scanning microscopy images revealed that the developed HAP was a rod-like crystalline structure with a typical 80–150 nm diameter. Energy-dispersive x-ray spectroscopy showed that the generated HAP was mostly composed of calcium, oxygen, and phosphorus. The Ca/P molar ratios in eggshell-derived and copper-doped HAP were 1.61 and 1.67, respectively, similar to the commercially available HAP ratio (1.67). The WST-8 assay was used to assess the biocompatibility of HAPs with hBMSCs. HAP(Cu) in the media significantly altered the cytotoxicity of biocompatible HAP(Cu). The osteogenic potential of HAP(Cu) was demonstrated by greater mineralization than that of pure HAP or the control. HAP(Cu) showed higher osteogenic gene expression than pure HAP and the control, indicating its stronger osteogenic potential. Furthermore, we assessed the effects of sample-treated macrophage-derived conditioned medium (CM) on hBMSCs' osteogenesis. CM-treated HAP(Cu) demonstrated a significantly higher osteogenic potential vis-à-vis pure HAP(Cu). These findings revealed that HAP(Cu) with CM significantly improved osteogenesis in hBMSCs and can be explored as a bone graft in bone tissue engineering.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37838","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The high bioactivity and biocompatibility of hydroxyapatite (HAP) make it a useful bone graft material for bone tissue engineering. However, the development superior osteoconductive and osteoinductive materials for bone regeneration remains a challenge. To overcome these constraints, Cu-doped hydroxyapatite (HAP(Cu)) from waste eggshells has been produced for bone tissue engineering. The materials produced were characterized using Fourier transform infrared spectroscopy, x-ray diffraction, and photoelectron spectroscopy. The scanning microscopy images revealed that the developed HAP was a rod-like crystalline structure with a typical 80–150 nm diameter. Energy-dispersive x-ray spectroscopy showed that the generated HAP was mostly composed of calcium, oxygen, and phosphorus. The Ca/P molar ratios in eggshell-derived and copper-doped HAP were 1.61 and 1.67, respectively, similar to the commercially available HAP ratio (1.67). The WST-8 assay was used to assess the biocompatibility of HAPs with hBMSCs. HAP(Cu) in the media significantly altered the cytotoxicity of biocompatible HAP(Cu). The osteogenic potential of HAP(Cu) was demonstrated by greater mineralization than that of pure HAP or the control. HAP(Cu) showed higher osteogenic gene expression than pure HAP and the control, indicating its stronger osteogenic potential. Furthermore, we assessed the effects of sample-treated macrophage-derived conditioned medium (CM) on hBMSCs' osteogenesis. CM-treated HAP(Cu) demonstrated a significantly higher osteogenic potential vis-à-vis pure HAP(Cu). These findings revealed that HAP(Cu) with CM significantly improved osteogenesis in hBMSCs and can be explored as a bone graft in bone tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
期刊最新文献
Soluble Proteins From Conventional and Organic Eggshell Membranes With Different Proteomic Profiles Show Similar In Vitro Biofunctions Dextran Sulfate-Modified and pH-Responsive Nanoprobes for Magnetic Resonance/Fluorescence Dual-Modality Imaging of Vulnerable Plaques Effects of Gamma Irradiation on Structural, Chemical, Bioactivity and Biocompatibility Characteristics of Bioactive Glass–Polymer Composite Film Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model Tuning Surface Chemistry Impacts on Cardiac Endothelial and Smooth Muscle Cell Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1