Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-01-27 Epub Date: 2024-11-29 DOI:10.1021/acs.jcim.4c01212
Seenivasan Hariharan, Sachin Kinge, Lucas Visscher
{"title":"Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective.","authors":"Seenivasan Hariharan, Sachin Kinge, Lucas Visscher","doi":"10.1021/acs.jcim.4c01212","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneous catalysis plays a critical role in many industrial processes, including the production of fuels, chemicals, and pharmaceuticals, and research to improve current catalytic processes is important to make the chemical industry more sustainable. Despite its importance, the challenge of identifying optimal catalysts with the required activity and selectivity persists, demanding a detailed understanding of the complex interactions between catalysts and reactants at various length and time scales. Density functional theory (DFT) has been the workhorse in modeling heterogeneous catalysis for more than three decades. While DFT has been instrumental, this review explores the application of quantum computing algorithms in modeling heterogeneous catalysis, which could bring a paradigm shift in our approach to understanding catalytic interfaces. Bridging academic and industrial perspectives by focusing on emerging materials, such as multicomponent alloys, single-atom catalysts, and magnetic catalysts, we delve into the limitations of DFT in capturing strong correlation effects and spin-related phenomena. The review also presents important algorithms and their applications relevant to heterogeneous catalysis modeling to showcase advancements in the field. Additionally, the review explores embedding strategies where quantum computing algorithms handle strongly correlated regions, while traditional quantum chemistry algorithms address the remainder, thereby offering a promising approach for large-scale heterogeneous catalysis modeling. Looking forward, ongoing investments by academia and industry reflect a growing enthusiasm for quantum computing's potential in heterogeneous catalysis research. The review concludes by envisioning a future where quantum computing algorithms seamlessly integrate into research workflows, propelling us into a new era of computational chemistry and thereby reshaping the landscape of modeling heterogeneous catalysis.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"472-511"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01212","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous catalysis plays a critical role in many industrial processes, including the production of fuels, chemicals, and pharmaceuticals, and research to improve current catalytic processes is important to make the chemical industry more sustainable. Despite its importance, the challenge of identifying optimal catalysts with the required activity and selectivity persists, demanding a detailed understanding of the complex interactions between catalysts and reactants at various length and time scales. Density functional theory (DFT) has been the workhorse in modeling heterogeneous catalysis for more than three decades. While DFT has been instrumental, this review explores the application of quantum computing algorithms in modeling heterogeneous catalysis, which could bring a paradigm shift in our approach to understanding catalytic interfaces. Bridging academic and industrial perspectives by focusing on emerging materials, such as multicomponent alloys, single-atom catalysts, and magnetic catalysts, we delve into the limitations of DFT in capturing strong correlation effects and spin-related phenomena. The review also presents important algorithms and their applications relevant to heterogeneous catalysis modeling to showcase advancements in the field. Additionally, the review explores embedding strategies where quantum computing algorithms handle strongly correlated regions, while traditional quantum chemistry algorithms address the remainder, thereby offering a promising approach for large-scale heterogeneous catalysis modeling. Looking forward, ongoing investments by academia and industry reflect a growing enthusiasm for quantum computing's potential in heterogeneous catalysis research. The review concludes by envisioning a future where quantum computing algorithms seamlessly integrate into research workflows, propelling us into a new era of computational chemistry and thereby reshaping the landscape of modeling heterogeneous catalysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用量子计算机模拟多相催化:一个学术和工业的观点。
多相催化在许多工业过程中起着至关重要的作用,包括燃料、化学品和药品的生产,研究改进当前的催化过程对于使化学工业更具可持续性至关重要。尽管它很重要,但确定具有所需活性和选择性的最佳催化剂的挑战仍然存在,这需要详细了解催化剂与反应物之间在不同长度和时间尺度上的复杂相互作用。密度泛函理论(DFT)三十多年来一直是模拟多相催化的主力。虽然DFT已经发挥了重要作用,但本文探讨了量子计算算法在多相催化建模中的应用,这可能会给我们理解催化界面的方法带来范式转变。通过关注新兴材料,如多组分合金、单原子催化剂和磁性催化剂,我们弥合了学术和工业的观点,深入研究了DFT在捕获强相关效应和自旋相关现象方面的局限性。本文还介绍了与多相催化建模相关的重要算法及其应用,以展示该领域的进展。此外,本文还探讨了嵌入策略,其中量子计算算法处理强相关区域,而传统量子化学算法处理其余区域,从而为大规模多相催化建模提供了一种有前途的方法。展望未来,学术界和工业界的持续投资反映了对量子计算在多相催化研究中的潜力日益增长的热情。展望未来,量子计算算法将无缝集成到研究工作流程中,推动我们进入计算化学的新时代,从而重塑多相催化建模的格局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Chemically Informed Deep Learning for Interpretable Radical Reaction Prediction. Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective. ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects. Quick-and-Easy Validation of Protein-Ligand Binding Models Using Fragment-Based Semiempirical Quantum Chemistry. End-Point Affinity Estimation of Galectin Ligands by Classical and Semiempirical Quantum Mechanical Potentials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1