Direct prion neuroinvasion following inhalation into the nasal cavity.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY mSphere Pub Date : 2024-12-19 Epub Date: 2024-11-29 DOI:10.1128/msphere.00863-24
Anthony E Kincaid, Melissa D Clouse, Shawn M Magrum, Jason C Bartz
{"title":"Direct prion neuroinvasion following inhalation into the nasal cavity.","authors":"Anthony E Kincaid, Melissa D Clouse, Shawn M Magrum, Jason C Bartz","doi":"10.1128/msphere.00863-24","DOIUrl":null,"url":null,"abstract":"<p><p>Inhalation of prions into the nasal cavity is an efficient route of infection. Following inhalation of infectious prions, animals develop disease with a similar incubation period compared with per os exposure, but with greater efficiency. To identify the reason for this increased efficiency, we identified neural structures that uniquely innervate the nasal cavity and neural structures known to mediate neuroinvasion following oral infection and used immunohistochemistry to determine the temporal and spatial accumulation of prions from hamster tissue sections containing cell bodies and axons at 2-week intervals following prion exposure. Prions were identified in the trigeminal ganglion, the spinal trigeminal tract in the brainstem, the intermediolateral cell column of the thoracic spinal cord, and the dorsal motor nucleus of the vagus/solitary nucleus complex months prior to detection of prions in the olfactory bulb or superior cervical ganglion. These results indicate that the trigeminal nerve, but not the olfactory nerve or sympathetic nerves, are involved in neuroinvasion following inhalation of prions into the nasal cavity. The detection of prions in the intermediolateral cell column of the thoracic spinal cord and dorsal motor nucleus of the vagus nerve 14 weeks following inhalation is consistent with inoculum crossing the alimentary wall and infecting the enteric nervous system via this route of infection. Neuroinvasion via the trigeminal nerve, in combination with entry into the central nervous system via autonomic innervation of the enteric nervous system, may contribute to increased efficiency of nasal cavity exposure to prions compared with per os exposure in hamsters.IMPORTANCEInhalation of prions into the nasal cavity is thought to be a route of infection in naturally acquired prion diseases. Experimental studies indicate that inhalation of prions is up to two orders of magnitude more efficient compared with ingestion. The mechanisms underlying this observation are poorly understood. We found a previously unreported direct route of neuroinvasion from the nasal cavity to the nervous system. Importantly, the peripheral ganglia involved may be a useful tissue to sample for prion diagnostics. Overall, identification of a new route of neuroinvasion following prion infection may provide an anatomical basis to explain the increased efficiency of infection following prion inhalation.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0086324"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00863-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inhalation of prions into the nasal cavity is an efficient route of infection. Following inhalation of infectious prions, animals develop disease with a similar incubation period compared with per os exposure, but with greater efficiency. To identify the reason for this increased efficiency, we identified neural structures that uniquely innervate the nasal cavity and neural structures known to mediate neuroinvasion following oral infection and used immunohistochemistry to determine the temporal and spatial accumulation of prions from hamster tissue sections containing cell bodies and axons at 2-week intervals following prion exposure. Prions were identified in the trigeminal ganglion, the spinal trigeminal tract in the brainstem, the intermediolateral cell column of the thoracic spinal cord, and the dorsal motor nucleus of the vagus/solitary nucleus complex months prior to detection of prions in the olfactory bulb or superior cervical ganglion. These results indicate that the trigeminal nerve, but not the olfactory nerve or sympathetic nerves, are involved in neuroinvasion following inhalation of prions into the nasal cavity. The detection of prions in the intermediolateral cell column of the thoracic spinal cord and dorsal motor nucleus of the vagus nerve 14 weeks following inhalation is consistent with inoculum crossing the alimentary wall and infecting the enteric nervous system via this route of infection. Neuroinvasion via the trigeminal nerve, in combination with entry into the central nervous system via autonomic innervation of the enteric nervous system, may contribute to increased efficiency of nasal cavity exposure to prions compared with per os exposure in hamsters.IMPORTANCEInhalation of prions into the nasal cavity is thought to be a route of infection in naturally acquired prion diseases. Experimental studies indicate that inhalation of prions is up to two orders of magnitude more efficient compared with ingestion. The mechanisms underlying this observation are poorly understood. We found a previously unreported direct route of neuroinvasion from the nasal cavity to the nervous system. Importantly, the peripheral ganglia involved may be a useful tissue to sample for prion diagnostics. Overall, identification of a new route of neuroinvasion following prion infection may provide an anatomical basis to explain the increased efficiency of infection following prion inhalation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
朊病毒吸入鼻腔后直接侵入神经系统。
将朊病毒吸入鼻腔是一种有效的感染途径。在吸入传染性朊病毒后,动物发病的潜伏期与接触os的潜伏期相似,但发病效率更高。为了确定这种效率提高的原因,我们鉴定了独特支配鼻腔的神经结构和已知介导口腔感染后神经侵袭的神经结构,并使用免疫组织化学方法确定了在暴露于朊病毒后2周,仓鼠组织中含有细胞体和轴突的朊病毒的时间和空间积累。在嗅球或颈上神经节检测到朊病毒前几个月,在三叉神经节、脑干三叉脊髓束、胸脊髓中外侧细胞柱和迷走/孤立核复核背侧运动核中检测到朊病毒。这些结果表明,三叉神经,而不是嗅觉神经或交感神经,参与了吸入朊病毒进入鼻腔后的神经侵犯。吸入后14周,在胸脊髓中外侧细胞柱和迷走神经背运动核中检测到朊病毒,这与接种物穿过消化壁并通过这一感染途径感染肠神经系统相一致。通过三叉神经的神经侵入,结合通过肠神经系统的自主神经支配进入中枢神经系统,可能有助于提高仓鼠鼻腔暴露于朊病毒的效率。将朊病毒吸入鼻腔被认为是自然获得性朊病毒疾病的一种感染途径。实验研究表明,与摄入相比,吸入朊病毒的效率最高可达两个数量级。人们对这一观察结果背后的机制知之甚少。我们发现了一种以前未报道的从鼻腔到神经系统的神经侵犯的直接途径。重要的是,涉及的周围神经节可能是朊病毒诊断的有用组织样本。总之,发现一种新的朊病毒感染后的神经侵袭途径可能为解释吸入朊病毒后感染效率的提高提供解剖学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
mSphere
mSphere Immunology and Microbiology-Microbiology
CiteScore
8.50
自引率
2.10%
发文量
192
审稿时长
11 weeks
期刊介绍: mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.
期刊最新文献
Cross-laboratory replication of pseudomyxoma peritonei tumor microbiome reveals reproducible microbial signatures. Prospective comparison of the digestive tract resistome and microbiota in cattle raised in grass-fed versus grain-fed production systems. Prophages are infrequently associated with antibiotic resistance in Pseudomonas aeruginosa clinical isolates. Virus-induced perturbations in the mouse microbiome are impacted by microbial experience. Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1