Roi Lapid, Yair Motro, Hillary Craddock, Ikram Salah, Roni King, Katherine Winner, Gila Kahila Bar-Gal, Jacob Moran-Gilad
{"title":"Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (<i>Canis aureus</i>) gut.","authors":"Roi Lapid, Yair Motro, Hillary Craddock, Ikram Salah, Roni King, Katherine Winner, Gila Kahila Bar-Gal, Jacob Moran-Gilad","doi":"10.1128/msphere.00819-24","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (<i>Canis aureus</i>) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (<i>bla</i>TEM, <i>bla</i>CTX-M15, and <i>bla</i>SHV), <i>qnrS</i> and <i>int1</i>. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (<i>bla</i>TEM-1, 96.4%; <i>bla</i>CTX-M-15, 51.4%, <i>bla</i>SHV, 15.3%), fluoroquinolone resistance (<i>qnrS</i>, 87.4%), and class 1 integrons (<i>Int1</i>, 94.6%). The <i>bla</i>TEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface.</p><p><strong>Importance: </strong>The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0081924"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00819-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface.
Importance: The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.