Virus-induced perturbations in the mouse microbiome are impacted by microbial experience.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY mSphere Pub Date : 2025-02-13 DOI:10.1128/msphere.00563-24
Shanley N Roach, Wendy Phillips, Lauren M Pross, Autumn E Sanders, Mark J Pierson, Ryan C Hunter, Ryan A Langlois
{"title":"Virus-induced perturbations in the mouse microbiome are impacted by microbial experience.","authors":"Shanley N Roach, Wendy Phillips, Lauren M Pross, Autumn E Sanders, Mark J Pierson, Ryan C Hunter, Ryan A Langlois","doi":"10.1128/msphere.00563-24","DOIUrl":null,"url":null,"abstract":"<p><p>The bacterial microbiome has a major impact on health and can shape metabolism, host tolerance, immune responses, and the outcome of future infections. The bacterial microbiome is highly variable between individuals. Specific pathogen-free animals have reduced microbiome diversity, making it difficult to evaluate the impact of infection-induced microbiome disruption that would be observed in free-living animals, including people. Mice are commonly used as a preclinical model but unfortunately often fail to predict translation success or failure, particularly for immune and infectious disease-targeting therapies. Here, we utilize pet store mouse cohoused \"dirty\" mice with diverse microbial experience to explore how host variability and infection may be interacting to drive unique microbiome changes. We found that cohoused animals had significantly increased bacterial diversity in the small intestine and cecum but not in the large intestine. There were differentially abundant taxa between clean and dirty animals in all three tissues. After infection with influenza A virus, samples clustered by both housing condition and infection status in the cecum and large intestine, while small intestine samples clustered predominantly by infection. Altogether, these results highlight the differential impact of housing, infection, and interaction between the two in dictating community composition across the gastrointestinal microbiome.IMPORTANCETraditionally housed pathogen-free mouse models do not fully capture the natural variability observed among human microbiomes, which may underlie their poor translationally predictive value. Understanding the difference between pathogen-induced shifts in the bacterial microbiome and natural microbiome variance is a major hurdle to determining bacterial biomarkers of disease. It is also critical to understand how diverse baseline microbiomes may be differentially impacted by infection and contribute to disease. Pet store cohoused \"dirty\" mice have diverse microbial experiences and microbiomes, allowing us to evaluate how baseline variation, infection, and interaction between the two impact the microbiome.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0056324"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00563-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The bacterial microbiome has a major impact on health and can shape metabolism, host tolerance, immune responses, and the outcome of future infections. The bacterial microbiome is highly variable between individuals. Specific pathogen-free animals have reduced microbiome diversity, making it difficult to evaluate the impact of infection-induced microbiome disruption that would be observed in free-living animals, including people. Mice are commonly used as a preclinical model but unfortunately often fail to predict translation success or failure, particularly for immune and infectious disease-targeting therapies. Here, we utilize pet store mouse cohoused "dirty" mice with diverse microbial experience to explore how host variability and infection may be interacting to drive unique microbiome changes. We found that cohoused animals had significantly increased bacterial diversity in the small intestine and cecum but not in the large intestine. There were differentially abundant taxa between clean and dirty animals in all three tissues. After infection with influenza A virus, samples clustered by both housing condition and infection status in the cecum and large intestine, while small intestine samples clustered predominantly by infection. Altogether, these results highlight the differential impact of housing, infection, and interaction between the two in dictating community composition across the gastrointestinal microbiome.IMPORTANCETraditionally housed pathogen-free mouse models do not fully capture the natural variability observed among human microbiomes, which may underlie their poor translationally predictive value. Understanding the difference between pathogen-induced shifts in the bacterial microbiome and natural microbiome variance is a major hurdle to determining bacterial biomarkers of disease. It is also critical to understand how diverse baseline microbiomes may be differentially impacted by infection and contribute to disease. Pet store cohoused "dirty" mice have diverse microbial experiences and microbiomes, allowing us to evaluate how baseline variation, infection, and interaction between the two impact the microbiome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mSphere
mSphere Immunology and Microbiology-Microbiology
CiteScore
8.50
自引率
2.10%
发文量
192
审稿时长
11 weeks
期刊介绍: mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.
期刊最新文献
Prospective comparison of the digestive tract resistome and microbiota in cattle raised in grass-fed versus grain-fed production systems. Prophages are infrequently associated with antibiotic resistance in Pseudomonas aeruginosa clinical isolates. Virus-induced perturbations in the mouse microbiome are impacted by microbial experience. Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut. Characterization of diet-linked amino acid pool influence on Fusobacterium spp. growth and metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1