{"title":"Urine proteomics in cardiovascular diseases: advances in biomarker discovery and clinical applications.","authors":"Xiaohong Song, Zhaoran Chen, Yuehong Zheng, Jianqiang Wu","doi":"10.1080/14789450.2024.2436401","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cardiovascular diseases (CVDs) are the leading causes of mortality and morbidity worldwide, making early diagnosis and effective treatment essential. As a promising and noninvasive research method, urine proteomics shows excellent potential to identify reliable urinary biomarkers that could enhance prediction, prevention, and prognosis in patients with CVD.</p><p><strong>Areas covered: </strong>This review summarizes recent advancements in urinary protein biomarker profiling using urine proteomic techniques to identify potential CVD biomarkers. Additionally, it highlights potential disease biomarkers for the early detection, risk stratification, and monitoring of CVD, including hypertension, atherosclerosis, coronary artery disease, angina, myocardial infarction, heart failure, preeclampsia, and vasculitis. A literature search was conducted through Pubmed, Scopus, Google Scholar, and Web of Science. The period is January 2009 to February 2024.</p><p><strong>Expert opinion: </strong>Over the past decade, urinary proteomics has been employed in CVD research, with the potential to facilitate the discovery of novel disease biomarkers and the exploration of prospective therapeutic targets. Proteomics-based multicenter cohort studies should be conducted in the future to gain deeper insights into the pathophysiological mechanisms of CVD, accelerate the identification of potential biomarkers for disease prediction, diagnosis, and treatment, and facilitate their clinical translation.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2024.2436401","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cardiovascular diseases (CVDs) are the leading causes of mortality and morbidity worldwide, making early diagnosis and effective treatment essential. As a promising and noninvasive research method, urine proteomics shows excellent potential to identify reliable urinary biomarkers that could enhance prediction, prevention, and prognosis in patients with CVD.
Areas covered: This review summarizes recent advancements in urinary protein biomarker profiling using urine proteomic techniques to identify potential CVD biomarkers. Additionally, it highlights potential disease biomarkers for the early detection, risk stratification, and monitoring of CVD, including hypertension, atherosclerosis, coronary artery disease, angina, myocardial infarction, heart failure, preeclampsia, and vasculitis. A literature search was conducted through Pubmed, Scopus, Google Scholar, and Web of Science. The period is January 2009 to February 2024.
Expert opinion: Over the past decade, urinary proteomics has been employed in CVD research, with the potential to facilitate the discovery of novel disease biomarkers and the exploration of prospective therapeutic targets. Proteomics-based multicenter cohort studies should be conducted in the future to gain deeper insights into the pathophysiological mechanisms of CVD, accelerate the identification of potential biomarkers for disease prediction, diagnosis, and treatment, and facilitate their clinical translation.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.