Serena Sinno, Gail MacInnis, Jean-Philippe Lessard, Carly D Ziter
{"title":"Variation in flower morphology associated with higher bee diversity in urban green spaces.","authors":"Serena Sinno, Gail MacInnis, Jean-Philippe Lessard, Carly D Ziter","doi":"10.1002/eap.3067","DOIUrl":null,"url":null,"abstract":"<p><p>Urbanization is a leading threat to biodiversity, but scientifically informed management of urban ecosystems can mitigate negative impacts. For wild bees, which are declining worldwide, careful consideration of flower choice in public and private green spaces could help preserve their diversity. While floral density and species richness are both linked to wild bee diversity, the mechanisms underlying these relationships are not fully understood. Here, we tested two hypotheses relating the influence of floral trait composition to bee species richness, which we have termed the within-trait diversity and optimal floral trait hypotheses. Specifically, we assessed whether variation in bee richness relates to variation in the weighted variance (trait diversity) and mean (optimal trait) of floral traits observed in urban green spaces across the city of Montreal, Canada. Our analyses focused on two floral traits relating to pollinator feeding success: nectar sugar concentration and corolla length. After accounting for variation in floral density among sites, bee richness was positively related to community-weighted variance in corolla length, supporting the within-trait diversity hypothesis. These findings suggest that management practices that increase the diversity of flower morphologies in urban green spaces can promote the persistence of wild bee communities in cities.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":" ","pages":"e3067"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/eap.3067","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urbanization is a leading threat to biodiversity, but scientifically informed management of urban ecosystems can mitigate negative impacts. For wild bees, which are declining worldwide, careful consideration of flower choice in public and private green spaces could help preserve their diversity. While floral density and species richness are both linked to wild bee diversity, the mechanisms underlying these relationships are not fully understood. Here, we tested two hypotheses relating the influence of floral trait composition to bee species richness, which we have termed the within-trait diversity and optimal floral trait hypotheses. Specifically, we assessed whether variation in bee richness relates to variation in the weighted variance (trait diversity) and mean (optimal trait) of floral traits observed in urban green spaces across the city of Montreal, Canada. Our analyses focused on two floral traits relating to pollinator feeding success: nectar sugar concentration and corolla length. After accounting for variation in floral density among sites, bee richness was positively related to community-weighted variance in corolla length, supporting the within-trait diversity hypothesis. These findings suggest that management practices that increase the diversity of flower morphologies in urban green spaces can promote the persistence of wild bee communities in cities.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.