Vegetated field margins generally increase plant biodiversity and connectivity in agricultural landscapes. They can deliver ecosystem services, such as providing food and shelter for insects, or maintaining biotic regulation. But they can also represent a risk, for example by hosting competitor plants or cultivated crop pests. In this work, we evaluated the effects of agricultural practices on indicators of three ecosystem services (providing floral resources for pollinators, reducing soil erosion and conserving plant biodiversity), and one ecosystem disservice (competing with the crop by hosting problematic weeds). We used a French nationwide-scale monitoring network, composed of more than 450 fields of cereals, vineyards, and market gardening. Plant sampling and agricultural practices surveys were conducted from 2013 to 2018. We unambiguously found that pesticide use, at either field or municipality levels, or both, had detrimental effects on ecosystem service indicators. Herbicide use and fertilization quantity decreased floral resources, affecting both their quantity and diversity. Pesticide use was also associated with fewer nature-value species and more problematic weeds. Margin management could also sometimes affect the service and disservice indicators. This work not only increases the knowledge on the unintentional negative impacts of agricultural practices on ecosystem service indicators, and then probably on their delivery, but also demonstrates that pesticide reduction is positively associated with proxies for ecosystem services. It also stresses the fact that these practices have to be implemented at both field and municipality levels.
Understanding and predicting the effects of climate change on populations requires linking the environmental conditions to demographic rates and the demographic rates to population-level consequences, but often this complete demographic pathway is not studied. Integrated population models (IPMs) incorporate demographic data into a single analytical framework, allowing for the inclusion of environmental covariates to test hypotheses considering how the environment influences demographic rates, and consequently, to which demographic rates population growth rate is most sensitive. In birds, there is strong evidence that environmental conditions impact population growth, and that long-distance migrant avian species with short phenological windows are at greatest risk of population decline due to changing environmental conditions. We built a Bayesian IPM with over 40 years of mark-recapture, fecundity, and nest box occupancy data and incorporated environmental covariates hypothesized to be driving the observed changes in two populations of a fast-lived long-distance migrant, the European pied flycatcher. Using variance decomposition methods, we identified the demographic pathways through which environmental covariates were acting. While several environmental covariates impacted fecundity and survival, only precipitation acted via apparent juvenile and adult survival contributed significantly to variation in population growth rate. Increased precipitation during the nest initiation, incubation, and hatchling stages had negative carry-over effects on juvenile survival during the post-fledging and overwintering period, and increased precipitation negatively impacted adult apparent survival, likely due to the increased energetic demands of caring for eggs and hatchlings in challenging conditions and reduced availability of aerial prey. We show that linking environmental covariates to demographic rates does not sufficiently explain or predict population-level consequences, and that decomposing variation along the complete demographic pathway is a necessary step to appropriately identify how covariates influence population dynamics.
Urban environments pose a threat to biodiversity through processes such as habitat degradation and biotic homogenization. Despite this, cities are increasingly recognized for their potential to conserve bees and other pollinators. Planting understory vegetation is one way of providing more floral resources to support urban bee communities and the ecosystem services they provide. However, the influence of vegetation origin and landscape context on urban bee communities is unclear, particularly in the Southern Hemisphere. We sampled the bee communities at 32 understory plantings dominated by exotic or indigenous (native to the local bioregion) vegetation around inner Melbourne, Australia. For each site, we recorded the amount of impervious surface and irrigated turf in 200-m buffers. Indigenous plantings were found to promote significantly greater alpha and beta diversity in bee communities compared to exotic plantings. Particular plant taxa were highly effective at attracting a variety of bees, with a maximum of 19 bee species (including specialists) hosted by indigenous Wahlenbergia capillaris (Campanulaceae). Apis mellifera was highly dominant and strongly associated with exotic plantings, whereas many indigenous bee species were positively associated with indigenous plantings. This study shows indigenous understory plants have a positive influence on indigenous bee communities relative to exotic plantings which tend to attract only A. mellifera. Planting indigenous plants in cities is therefore recommended as a conservation action for local bee species.
Despite the ecological expression and conservation importance of diverse behavioral tactics in animals, there is often friction associated with conventional analytical approaches and inference concerning variation in spatial behavior. Implicitly or explicitly, population-level inferences are generally the main objective of studies, but interpretations can be ambiguous in the presence of divergent behavioral tactics across individuals or cohorts, as with generalist species. We pursued a novel analytical approach and assessed the underlying mechanisms driving variation in spatial behaviors of generalist species using the American black bear (Ursus americanus) as our focal species. We quantified individual variation in habitat selection expressed by black bears using individual models for 35 collared bears across four study areas in Wyoming, USA. We modeled how state-dependent factors (age, sex, δ15Nitrogen, and body fat) and resource availability influenced behavioral variation in resource selection. We observed vast variation among individuals, demonstrating patterns consistent with a generalist species. Black bear resource selection differed with changes in state dependence and resource availability. Specifically, traits uniquely important to black bear success, body fat and carnivory, explained variation in selection for forage indexed by normalized difference vegetation index (NDVI), forests, and riparian areas. Environmental heterogeneity via differences in resource availability magnified behavioral variation in resource selection by black bears. Selection trends for NDVI and deciduous shrubs were explained by resource availability, indicating black bears exhibited functional responses in habitat selection. These insights emerged from our analytical approach; had we implemented a more conventional, population-level assessment, we would have simply concluded that black bears displayed behavioral neutrality with respect to forage resources. Acknowledgment of behavioral variation when considering spatial behavior of generalist species provides a more representative understanding of individuals within a population, and our analytical approach offers a solution to uncovering drivers of individual variation in spatial behavior.
Biodiversity is highly affected by ecological processes at the landscape level. To facilitate management decisions at a landscape level, we present an end-user-oriented framework that assesses the biodiversity capacity of individual biotopes in a fragmented landscape and ranks the importance of the biotope patches. The framework can be applied to any biotope and landscape. Analyses can further be done on planned or predicted future scenarios and changes in the landscape structure. There has been continuous exchange with stakeholders and case study testing with the purpose to build a tool that answers the important questions of end users, and provides results that are useful for decision-makers and environmental managers in environmental management and land use planning. The framework is novel in its calculations of the combined effects of connectivity and survival of biodiversity in the biotope patches. It uses land cover data and the concept of umbrella focal species as input. The framework strongly builds on ecological theory and ecological modeling, and produces three outputs of interest: a heatmap visualizing individual patch importance for upholding landscape biodiversity, an indicator metric of the ability of a biotope landscape to support biodiversity, and the number of unsustainable individual patches. The theoretical foundation and structure of the framework are thoroughly explained. The use of its output is further demonstrated by one selected case study where the calculations are applied to a biotope of fragmented old coniferous forest in Sweden. We additionally examine and show how the overall biodiversity potential of the biotope landscape is dependent on which types of species communities are in focus by applying different umbrella focal species. The case study demonstrates the importance of landscape structure for sustainable biodiversity. Results further demonstrate that it is essential to consider the type of species community that is the primary biodiversity conservation target.

