{"title":"Unveiling the Nontrivial Electronic Structures and Fermi Topology of High-Temperature Kagome Ferrimagnet HoMn6Sn6","authors":"Bin Wang, Xiang-Fan Huang, Detong Wu, Huakun Zuo, Meng Wang, Yusheng Hou, Bing Shen","doi":"10.1021/acs.nanolett.4c04411","DOIUrl":null,"url":null,"abstract":"High-temperature (HT) kagome magnets provide important platforms to explore nontrivial topological physics and promising potentials for spintronic applications, due to the complicated interactions among their electrons, lattices, and magnetism. Herein, the nontrivial electronic properties of a HT layered kagome-magnet, HoMn<sub>6</sub>Sn<sub>6</sub>, are systematically resolved by quantum oscillation measurements and density functional theory (DFT) calculations. The prominent Shubnikov–de Haas (SdH) oscillations under pulsed high magnetic fields reveal a high quantum mobility of 0.37 m<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup> for this HT ferrimagnet. The observed multiple-frequency quantum oscillations exhibit various angular dependences, consistent with DFT calculations which suggest a complex Fermi topology of three three-dimensional hole pockets and two electron pockets. The observed π shift of the Berry phase for quantum oscillations unveils nontrivial topological properties in HoMn<sub>6</sub>Sn<sub>6</sub>, further confirmed by DFT calculated Dirac fermions and large anomalous Hall conductivity. Our findings establish HoMn<sub>6</sub>Sn<sub>6</sub> as an HT magnetic candidate for topological magnetoelectronics or spin quantum applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"17 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04411","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature (HT) kagome magnets provide important platforms to explore nontrivial topological physics and promising potentials for spintronic applications, due to the complicated interactions among their electrons, lattices, and magnetism. Herein, the nontrivial electronic properties of a HT layered kagome-magnet, HoMn6Sn6, are systematically resolved by quantum oscillation measurements and density functional theory (DFT) calculations. The prominent Shubnikov–de Haas (SdH) oscillations under pulsed high magnetic fields reveal a high quantum mobility of 0.37 m2·V–1·s–1 for this HT ferrimagnet. The observed multiple-frequency quantum oscillations exhibit various angular dependences, consistent with DFT calculations which suggest a complex Fermi topology of three three-dimensional hole pockets and two electron pockets. The observed π shift of the Berry phase for quantum oscillations unveils nontrivial topological properties in HoMn6Sn6, further confirmed by DFT calculated Dirac fermions and large anomalous Hall conductivity. Our findings establish HoMn6Sn6 as an HT magnetic candidate for topological magnetoelectronics or spin quantum applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.