Nonlinear Magnetic Sensing with Hybrid Nitrogen-Vacancy/Magnon Systems

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-29 DOI:10.1021/acs.nanolett.4c04459
Zhongqiang Hu, Zhiping He, Qiuyuan Wang, Chung-Tao Chou, Justin T. Hou, Luqiao Liu
{"title":"Nonlinear Magnetic Sensing with Hybrid Nitrogen-Vacancy/Magnon Systems","authors":"Zhongqiang Hu, Zhiping He, Qiuyuan Wang, Chung-Tao Chou, Justin T. Hou, Luqiao Liu","doi":"10.1021/acs.nanolett.4c04459","DOIUrl":null,"url":null,"abstract":"Magnetic sensing beyond the linear regime could broaden the frequency range of detectable magnetic fields, which is crucial to various microwave and quantum applications. Recently, nonlinear interactions in diamond nitrogen-vacancy (NV) centers are proposed to realize magnetic sensing across arbitrary frequencies. In this work, we enhanced these capabilities by exploiting the nonlinear spin dynamics in hybrid systems of NV centers and ferri- or ferromagnetic (FM) thin films. We studied the frequency mixing effect in the hybrid systems and demonstrated that the introduction of FM films not only amplifies the intensity of nonlinear resonance signals that are intrinsic to NV spins but also enables novel frequency mixing through parametric pumping and nonlinear magnon scattering effects. The discovery and understanding of the magnetic nonlinearities in hybrid NV/magnon systems position them as a prime candidate for magnetic sensing with a broad frequency range and high tunability, particularly meaningful for nanoscale, dynamical, and noninvasive materials characterization.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic sensing beyond the linear regime could broaden the frequency range of detectable magnetic fields, which is crucial to various microwave and quantum applications. Recently, nonlinear interactions in diamond nitrogen-vacancy (NV) centers are proposed to realize magnetic sensing across arbitrary frequencies. In this work, we enhanced these capabilities by exploiting the nonlinear spin dynamics in hybrid systems of NV centers and ferri- or ferromagnetic (FM) thin films. We studied the frequency mixing effect in the hybrid systems and demonstrated that the introduction of FM films not only amplifies the intensity of nonlinear resonance signals that are intrinsic to NV spins but also enables novel frequency mixing through parametric pumping and nonlinear magnon scattering effects. The discovery and understanding of the magnetic nonlinearities in hybrid NV/magnon systems position them as a prime candidate for magnetic sensing with a broad frequency range and high tunability, particularly meaningful for nanoscale, dynamical, and noninvasive materials characterization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Enhanced Antimicrobial Efficiency of Gold Nanoclusters via Improved Sonodynamic Activity and Out-Membrane Crossing Capacity Stable and Efficient Red InP-Based QLEDs through Surface Passivation Strategies of Quantum Dots Unveiling the Nontrivial Electronic Structures and Fermi Topology of High-Temperature Kagome Ferrimagnet HoMn6Sn6 Nonlinear Magnetic Sensing with Hybrid Nitrogen-Vacancy/Magnon Systems Thermodynamics of Polyethylene Glycol Intrusion in Microporous Water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1