Efficient Physical Truncation of Low-Frequency ATEM Problems in Specific Geometries by Using Random Forest Regression Based PMM Model

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-11-05 DOI:10.1109/JMMCT.2024.3491835
Naixing Feng;Shuiqing Zeng;Huan Wang;Yuxian Zhang;Zhixiang Huang
{"title":"Efficient Physical Truncation of Low-Frequency ATEM Problems in Specific Geometries by Using Random Forest Regression Based PMM Model","authors":"Naixing Feng;Shuiqing Zeng;Huan Wang;Yuxian Zhang;Zhixiang Huang","doi":"10.1109/JMMCT.2024.3491835","DOIUrl":null,"url":null,"abstract":"In addressing the challenges posed by low-frequency airborne transient electromagnetics (ATEM), it is necessary to take into account the considerations of accuracy, computational efficiency, and the scale and intricacy of the physical domain. This becomes particularly crucial when dealing with large-scale, complex issues, with the aim of mitigating the computational resource burden associated with managing such complexities. In order to further meet the aforementioned criteria, a Perfectly Matched Monolayer (PMM) model has been introduced into the Random Forest Regression (RFR) framework. The RFR-based PMM model has demonstrated exceptional accuracy through the utilization of Bagging's integrated learning methodology, while also reducing the computational resource requirements for processing time. In comparison to traditional machine learning models, our model has exhibited significant advantages in terms of training stability, model efficiency, and parallelization capabilities. To verify and establish the reliability of this approach, three-dimensional numerical simulations of the ATEM problem were conducted. The proposed model in this study has exhibited superior accuracy, efficiency, and versatility in addressing the low-frequency ATEM problem, integrating with the FDTD method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"1-7"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742647/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In addressing the challenges posed by low-frequency airborne transient electromagnetics (ATEM), it is necessary to take into account the considerations of accuracy, computational efficiency, and the scale and intricacy of the physical domain. This becomes particularly crucial when dealing with large-scale, complex issues, with the aim of mitigating the computational resource burden associated with managing such complexities. In order to further meet the aforementioned criteria, a Perfectly Matched Monolayer (PMM) model has been introduced into the Random Forest Regression (RFR) framework. The RFR-based PMM model has demonstrated exceptional accuracy through the utilization of Bagging's integrated learning methodology, while also reducing the computational resource requirements for processing time. In comparison to traditional machine learning models, our model has exhibited significant advantages in terms of training stability, model efficiency, and parallelization capabilities. To verify and establish the reliability of this approach, three-dimensional numerical simulations of the ATEM problem were conducted. The proposed model in this study has exhibited superior accuracy, efficiency, and versatility in addressing the low-frequency ATEM problem, integrating with the FDTD method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林回归的PMM模型对特定几何形状低频ATEM问题的有效物理截断
在解决低频机载瞬变电磁(ATEM)带来的挑战时,有必要考虑到精度,计算效率以及物理领域的规模和复杂性。在处理大规模、复杂的问题时,这一点尤其重要,因为它的目的是减轻与管理此类复杂性相关的计算资源负担。为了进一步满足上述标准,在随机森林回归(RFR)框架中引入了完全匹配单层(PMM)模型。基于rfr的PMM模型通过使用Bagging的集成学习方法显示出卓越的准确性,同时还减少了处理时间的计算资源需求。与传统的机器学习模型相比,我们的模型在训练稳定性、模型效率和并行化能力方面表现出显著的优势。为了验证和建立该方法的可靠性,对ATEM问题进行了三维数值模拟。本研究中提出的模型与FDTD方法相结合,在解决低频ATEM问题方面表现出优越的精度、效率和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1