S. Vishnu Shankar, R. Kumaraperumal, M. Radha, Balaji Kannan, S. G. Patil, G. Vanitha, M. Nivas Raj, M. Athira, S. Ananthakrishnan
{"title":"Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach","authors":"S. Vishnu Shankar, R. Kumaraperumal, M. Radha, Balaji Kannan, S. G. Patil, G. Vanitha, M. Nivas Raj, M. Athira, S. Ananthakrishnan","doi":"10.1007/s12665-024-11985-5","DOIUrl":null,"url":null,"abstract":"<div><p>Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11985-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.