A comparative analysis of machine learning approaches to gap filling meteorological datasets

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Earth Sciences Pub Date : 2024-12-02 DOI:10.1007/s12665-024-11982-8
Branislava Lalic, Adam Stapleton, Thomas Vergauwen, Steven Caluwaerts, Elke Eichelmann, Mark Roantree
{"title":"A comparative analysis of machine learning approaches to gap filling meteorological datasets","authors":"Branislava Lalic,&nbsp;Adam Stapleton,&nbsp;Thomas Vergauwen,&nbsp;Steven Caluwaerts,&nbsp;Elke Eichelmann,&nbsp;Mark Roantree","doi":"10.1007/s12665-024-11982-8","DOIUrl":null,"url":null,"abstract":"<div><p>Observational data of the Earth’s weather and climate at the level of ground-based weather stations are prone to gaps due to a variety of causes. These gaps can inhibit scientific research as they impede the use of numerical models for agricultural, meteorological and climatological applications as well as introducing analytic biases. In this research, different machine learning techniques are evaluated together with traditional approaches to gap filling automated weather station data. When filling gaps for a specific data stream, data from neighbouring weather stations are used in addition to reanalysis data from the European Centre for Medium-Range Weather Forecasts atmospheric reanalyses of the global climate, ERA-5 Land. A novel gap creation method is introduced that provides 100% coverage in sampling the dataset while ensuring that the sampled data are randomly distributed. Gap filling across a range of different gap lengths and target variables are compared using a range of error functions. The variables selected for modelling are mean air temperature, dew point, mean relative humidity and leaf wetness. Our results show that models perform best on gap-filling temperature and dew point with worst performance on leaf wetness. As expected, model performance decreases with increasing gap length. Comparison between machine learning and reanalysis approaches show very promising results from a number of the machine learning models.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11982-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Observational data of the Earth’s weather and climate at the level of ground-based weather stations are prone to gaps due to a variety of causes. These gaps can inhibit scientific research as they impede the use of numerical models for agricultural, meteorological and climatological applications as well as introducing analytic biases. In this research, different machine learning techniques are evaluated together with traditional approaches to gap filling automated weather station data. When filling gaps for a specific data stream, data from neighbouring weather stations are used in addition to reanalysis data from the European Centre for Medium-Range Weather Forecasts atmospheric reanalyses of the global climate, ERA-5 Land. A novel gap creation method is introduced that provides 100% coverage in sampling the dataset while ensuring that the sampled data are randomly distributed. Gap filling across a range of different gap lengths and target variables are compared using a range of error functions. The variables selected for modelling are mean air temperature, dew point, mean relative humidity and leaf wetness. Our results show that models perform best on gap-filling temperature and dew point with worst performance on leaf wetness. As expected, model performance decreases with increasing gap length. Comparison between machine learning and reanalysis approaches show very promising results from a number of the machine learning models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
期刊最新文献
A comparative analysis of machine learning approaches to gap filling meteorological datasets Research on geospatial technology optimization based on GeoAI multi-objective optimization Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach Trend analysis of hydrometeorological data in Euphrates river Basin An Approach to vulnerability ındexing standardization to assess flood vulnerability for Vakfıkebir, Trabzon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1