Microalgae as a potential raw material for plant-based seafood alternatives: A comprehensive review

IF 3.5 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Food Science & Nutrition Pub Date : 2024-09-23 DOI:10.1002/fsn3.4313
Shahida Anusha Siddiqui, İlknur Ucak, Maliha Afreen, Abhilash Sasidharan, Bello Mohammed Yunusa, Shuva Bhowmik, Ravi Pandiselvam, Tigran Garrievich Ambartsumov, Mohd Asif Shah
{"title":"Microalgae as a potential raw material for plant-based seafood alternatives: A comprehensive review","authors":"Shahida Anusha Siddiqui,&nbsp;İlknur Ucak,&nbsp;Maliha Afreen,&nbsp;Abhilash Sasidharan,&nbsp;Bello Mohammed Yunusa,&nbsp;Shuva Bhowmik,&nbsp;Ravi Pandiselvam,&nbsp;Tigran Garrievich Ambartsumov,&nbsp;Mohd Asif Shah","doi":"10.1002/fsn3.4313","DOIUrl":null,"url":null,"abstract":"<p>Microalgae presents an inducing potential as a primary raw material in crafting plant-based seafood alternatives, revolutionizing the landscape of sustainable food production. These microscopic organisms display a rich nutritional profile, presenting an array of nutrients such as essential amino acids, polyunsaturated fatty acids, vitamins, and minerals comparable to those found in seafood. Their versatile nature allows for the replication of seafood flavors and textures, addressing the sensory aspects crucial to consumer acceptance of substitutes. Furthermore, microalgae cultivation requires minimal land and resources, making it an environmentally friendly and scalable option for meeting the increasing demand for sustainable protein sources. The biochemical diversity within microalgae species provides a wide spectrum of options for developing various seafood substitutes. Moreover, advancements in biotechnology and processing techniques continue to enhance the feasibility and palatability of these alternatives. Modern technologies, such as 3D printing, provide convenient and efficient technological options to reproduce the identical texture properties of seafood. As society gravitates toward eco-conscious food choices, the exploration of microalgae as a core ingredient in plant-based seafood alternatives aligns with the quest for ethical, environmentally sustainable, and nutritious food sources. This expanding field holds immense potential for reshaping the future of food by offering appealing, cruelty-free alternatives while reducing dependence on traditional, unsustainable modes of seafood production.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"12 11","pages":"8559-8593"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.4313","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4313","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae presents an inducing potential as a primary raw material in crafting plant-based seafood alternatives, revolutionizing the landscape of sustainable food production. These microscopic organisms display a rich nutritional profile, presenting an array of nutrients such as essential amino acids, polyunsaturated fatty acids, vitamins, and minerals comparable to those found in seafood. Their versatile nature allows for the replication of seafood flavors and textures, addressing the sensory aspects crucial to consumer acceptance of substitutes. Furthermore, microalgae cultivation requires minimal land and resources, making it an environmentally friendly and scalable option for meeting the increasing demand for sustainable protein sources. The biochemical diversity within microalgae species provides a wide spectrum of options for developing various seafood substitutes. Moreover, advancements in biotechnology and processing techniques continue to enhance the feasibility and palatability of these alternatives. Modern technologies, such as 3D printing, provide convenient and efficient technological options to reproduce the identical texture properties of seafood. As society gravitates toward eco-conscious food choices, the exploration of microalgae as a core ingredient in plant-based seafood alternatives aligns with the quest for ethical, environmentally sustainable, and nutritious food sources. This expanding field holds immense potential for reshaping the future of food by offering appealing, cruelty-free alternatives while reducing dependence on traditional, unsustainable modes of seafood production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Science & Nutrition
Food Science & Nutrition Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
5.10%
发文量
434
审稿时长
24 weeks
期刊介绍: Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.
期刊最新文献
Cover Image Issue Information Cover Image Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1