{"title":"Probiotic Lactobacillus plantarum LP28 and Saccharomyces cerevisiae improve the bioactive content and quality of fruit-based rice beverage","authors":"Afusat Yinka Aregbe, Turkson Antwi Boasiako, YuQing Xiong, Md. Hafizur Rahman, Yongkun Ma","doi":"10.1002/fsn3.4462","DOIUrl":null,"url":null,"abstract":"<p>The increasing demand for plant-based beverages with improved functional and sensory qualities has guided this study, which examines the bioactive content, functional, and sensory properties of a rice, apple pomace, and sea buckthorn beverage (RASB) fermented with probiotic <i>Lactobacillus plantarum</i> and <i>Saccharomyces cerevisiae</i>. We found out that total polyphenol content (TPC), total flavonoid content (TFC), and β-carotene were significantly higher in samples with <i>Saccharomyces cerevisiae</i>, particularly in coculture samples. These samples also exhibited elevated alcohol by volume (ABV). Monoculture samples showed increased total flavonol content (TFLC), total anthocyanin content (TAC), and proanthocyanidin. The RASB-LP sample, containing only <i>Lactobacillus plantarum</i>, revealed the highest antioxidant properties, evidenced by DPPH (94.13 ± 0.05%) and ABTS (97.69 ± 0.09%) assays. Interestingly, 3-methylbutyl 3-methylbutanoate, abundant in the unfermented control, was hydrolyzed to 3-methyl-1-butanol in fermented samples, especially those containing <i>Saccharomyces cerevisiae</i>. Sensory evaluation evidenced that RASB-LP scored highest for aroma and overall acceptability. FTIR analysis also indicated changes in functional groups of RASB samples. Together, our findings suggest that a novel probiotic cereal beverage with enhanced quality can be developed through the addition of fruit and fruit pomace, coupled with fermentation using <i>Lactobacillus plantarum</i> LP28 and <i>Saccharomyces cerevisiae</i>.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"12 11","pages":"9340-9352"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.4462","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4462","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for plant-based beverages with improved functional and sensory qualities has guided this study, which examines the bioactive content, functional, and sensory properties of a rice, apple pomace, and sea buckthorn beverage (RASB) fermented with probiotic Lactobacillus plantarum and Saccharomyces cerevisiae. We found out that total polyphenol content (TPC), total flavonoid content (TFC), and β-carotene were significantly higher in samples with Saccharomyces cerevisiae, particularly in coculture samples. These samples also exhibited elevated alcohol by volume (ABV). Monoculture samples showed increased total flavonol content (TFLC), total anthocyanin content (TAC), and proanthocyanidin. The RASB-LP sample, containing only Lactobacillus plantarum, revealed the highest antioxidant properties, evidenced by DPPH (94.13 ± 0.05%) and ABTS (97.69 ± 0.09%) assays. Interestingly, 3-methylbutyl 3-methylbutanoate, abundant in the unfermented control, was hydrolyzed to 3-methyl-1-butanol in fermented samples, especially those containing Saccharomyces cerevisiae. Sensory evaluation evidenced that RASB-LP scored highest for aroma and overall acceptability. FTIR analysis also indicated changes in functional groups of RASB samples. Together, our findings suggest that a novel probiotic cereal beverage with enhanced quality can be developed through the addition of fruit and fruit pomace, coupled with fermentation using Lactobacillus plantarum LP28 and Saccharomyces cerevisiae.
期刊介绍:
Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.