Novel peptides with calcium-binding capacity from antler bone hydrolysate, its bioactivity on MC3T3-E1 cells, and the possible chelating mode

IF 3.5 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Food Science & Nutrition Pub Date : 2024-09-20 DOI:10.1002/fsn3.4441
Zhaoguo Wang, Xiaorui Zhai, Xingyu Xiao, Peijun Xia, Xi Chen, Yi Li, Linlin Hao, Yining Zhang
{"title":"Novel peptides with calcium-binding capacity from antler bone hydrolysate, its bioactivity on MC3T3-E1 cells, and the possible chelating mode","authors":"Zhaoguo Wang,&nbsp;Xiaorui Zhai,&nbsp;Xingyu Xiao,&nbsp;Peijun Xia,&nbsp;Xi Chen,&nbsp;Yi Li,&nbsp;Linlin Hao,&nbsp;Yining Zhang","doi":"10.1002/fsn3.4441","DOIUrl":null,"url":null,"abstract":"<p>In this study, peptide-calcium chelate was screened from antler bone hydrolysate, and its bioactivity on MC3T3-E1 cells and its chelating mechanism were investigated. In vitro experiments showed that peptide-calcium chelate promoted the differentiation and mineralization of MC3T3-E1 cells. Subsequently, three novel calcium-chelating peptides were obtained from antler bone hydrolysate using hydroxyapatite chromatography (HAC), Sephadex G-25 gel filtration chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Meanwhile, this work determined peptides' amino acid sequences as TKLGTQLQL, LETVILGLLKT, and KMVFLMDLLK based on LC–MS/MS. Then the present work prepared the three peptides, with the corresponding calcium-chelating rates being verified as 87.68 ± 2.86%, 80.72 ± 0.93%, and 67.96 ± 0.98%, respectively. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible absorption (UV–vis) spectroscopy, X-ray diffraction (XRD), circular dichroism (CD), zeta potential, and molecular dynamics (MD) simulations were adopted to investigate the chelating mode of peptides with calcium ions. As a result, oxygen in the carboxyl group and the nitrogen in the amino group were related to calcium binding. In addition, the chelation site preferred the negatively charged carboxylate groups of Leu or Thr. The present work revealed that antler bone might be the new calcium-chelating peptide source and elucidated their positive role in osteogenesis.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"12 11","pages":"9069-9084"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.4441","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4441","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, peptide-calcium chelate was screened from antler bone hydrolysate, and its bioactivity on MC3T3-E1 cells and its chelating mechanism were investigated. In vitro experiments showed that peptide-calcium chelate promoted the differentiation and mineralization of MC3T3-E1 cells. Subsequently, three novel calcium-chelating peptides were obtained from antler bone hydrolysate using hydroxyapatite chromatography (HAC), Sephadex G-25 gel filtration chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Meanwhile, this work determined peptides' amino acid sequences as TKLGTQLQL, LETVILGLLKT, and KMVFLMDLLK based on LC–MS/MS. Then the present work prepared the three peptides, with the corresponding calcium-chelating rates being verified as 87.68 ± 2.86%, 80.72 ± 0.93%, and 67.96 ± 0.98%, respectively. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible absorption (UV–vis) spectroscopy, X-ray diffraction (XRD), circular dichroism (CD), zeta potential, and molecular dynamics (MD) simulations were adopted to investigate the chelating mode of peptides with calcium ions. As a result, oxygen in the carboxyl group and the nitrogen in the amino group were related to calcium binding. In addition, the chelation site preferred the negatively charged carboxylate groups of Leu or Thr. The present work revealed that antler bone might be the new calcium-chelating peptide source and elucidated their positive role in osteogenesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Science & Nutrition
Food Science & Nutrition Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
5.10%
发文量
434
审稿时长
24 weeks
期刊介绍: Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.
期刊最新文献
Cover Image Issue Information Cover Image Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1