A novel frameshift variant in the TMPRSS3 gene causes nonsyndromic hearing loss in a consanguineous family.

IF 2.1 4区 医学 Q3 GENETICS & HEREDITY BMC Medical Genomics Pub Date : 2024-11-29 DOI:10.1186/s12920-024-02055-7
Nahid Rezaie, Saeedeh Sadat Ghazanfari, Seyede Mahsa Mousavikia, Nader Mansour Samaei, Morteza Oladnabi, Abdolazim Sarli, Teymoor Khosravi
{"title":"A novel frameshift variant in the TMPRSS3 gene causes nonsyndromic hearing loss in a consanguineous family.","authors":"Nahid Rezaie, Saeedeh Sadat Ghazanfari, Seyede Mahsa Mousavikia, Nader Mansour Samaei, Morteza Oladnabi, Abdolazim Sarli, Teymoor Khosravi","doi":"10.1186/s12920-024-02055-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hearing Loss (HL) is the most common sensorineural condition in humans. Mutations in the TMPRSS3 gene (DNFB8/10 locus) have been linked to autosomal recessive non-syndromic hearing loss (ARNSHL).</p><p><strong>Methods: </strong>Whole-exome sequencing (WES) was utilized to identify disease-causing variants in a proband from Iran with ARNSHL who presented clinically with sensorineural, bilateral, and prelingual HL. The pathogenicity and novelty of the identified variant were assessed using various databases. A co-segregation study was also performed to confirm the presence of the variant in the proband's parents. Additionally, the secondary and tertiary structures of the mutant TMPRSS3 protein were predicted using bioinformatics tools. Furthermore, a global mutational spectrum of TMPRSS3 was created and statistically analyzed. The Iranome database was also used to identify other putative mutations in the TMPRSS3 gene in the Iranian population.</p><p><strong>Results: </strong>We identified a novel homozygous single nucleotide deletion in TMPRSS3 (c.297delA, p.Asp100ThrfsTer52) in the proband. This is the first report of this mutation in a patient with ARNSHL. Sanger sequencing confirmed that this variant co-segregated from the proband's parents. Bioinformatic tools classified this novel variant as likely pathogenic. Additionally, 49.55% of families with TMPRSS3-related HL patients were shown to have consanguinity, consistent with our study. The Iranome database also revealed the c.268G > A variant as a putative novel mutation in TMPRSS3.</p><p><strong>Conclusion: </strong>This research expanded the pool of evidence regarding the association between mutations in the TMPRSS3 gene and ARNSHL. The finding confirmed that a single nucleotide deletion caused HL in the proband, suggesting that genetic testing, such as WES, is a robust technique for diagnosing patients with this condition.</p>","PeriodicalId":8915,"journal":{"name":"BMC Medical Genomics","volume":"17 1","pages":"283"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12920-024-02055-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hearing Loss (HL) is the most common sensorineural condition in humans. Mutations in the TMPRSS3 gene (DNFB8/10 locus) have been linked to autosomal recessive non-syndromic hearing loss (ARNSHL).

Methods: Whole-exome sequencing (WES) was utilized to identify disease-causing variants in a proband from Iran with ARNSHL who presented clinically with sensorineural, bilateral, and prelingual HL. The pathogenicity and novelty of the identified variant were assessed using various databases. A co-segregation study was also performed to confirm the presence of the variant in the proband's parents. Additionally, the secondary and tertiary structures of the mutant TMPRSS3 protein were predicted using bioinformatics tools. Furthermore, a global mutational spectrum of TMPRSS3 was created and statistically analyzed. The Iranome database was also used to identify other putative mutations in the TMPRSS3 gene in the Iranian population.

Results: We identified a novel homozygous single nucleotide deletion in TMPRSS3 (c.297delA, p.Asp100ThrfsTer52) in the proband. This is the first report of this mutation in a patient with ARNSHL. Sanger sequencing confirmed that this variant co-segregated from the proband's parents. Bioinformatic tools classified this novel variant as likely pathogenic. Additionally, 49.55% of families with TMPRSS3-related HL patients were shown to have consanguinity, consistent with our study. The Iranome database also revealed the c.268G > A variant as a putative novel mutation in TMPRSS3.

Conclusion: This research expanded the pool of evidence regarding the association between mutations in the TMPRSS3 gene and ARNSHL. The finding confirmed that a single nucleotide deletion caused HL in the proband, suggesting that genetic testing, such as WES, is a robust technique for diagnosing patients with this condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Genomics
BMC Medical Genomics 医学-遗传学
CiteScore
3.90
自引率
0.00%
发文量
243
审稿时长
3.5 months
期刊介绍: BMC Medical Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of functional genomics, genome structure, genome-scale population genetics, epigenomics, proteomics, systems analysis, and pharmacogenomics in relation to human health and disease.
期刊最新文献
Sex differences in MAGEL2 gene promoter methylation in high functioning autism - trends from a pilot study using nanopore Cas9 targeted long read sequencing. A novel frameshift variant in the TMPRSS3 gene causes nonsyndromic hearing loss in a consanguineous family. ASXL1 truncating variants in BOS and myeloid leukemia drive shared disruption of Wnt-signaling pathways but have differential isoform usage of RUNX3. Hereditary thrombotic thrombocytopenic purpura mimicking immune thrombocytopenia was revealed by miscarriage-novel compound heterozygous mutations in hTTP. Proteomic analysis illustrates the potential involvement of dysregulated ribosome-related pathways and disrupted metabolism during retinoic acid-induced cleft palate development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1