Background: Post-Covid Pulmonary Fibrosis (PCPF) has emerged as a significant global issue associated with a poor quality of life and significant morbidity. Currently, our understanding of the molecular pathways of PCPF is limited. Hence, in this study, we performed whole transcriptome sequencing of the RNA isolated from the bronchoalveolar lavage (BAL) samples of PCPF and compared it with idiopathic pulmonary fibrosis (IPF) and non-ILD (Interstitial Lung Disease) control to understand the gene expression profile and associated pathways.
Methods: BAL samples from PCPF (n = 3), IPF (n = 3), and non-ILD Control (n = 3) (individuals with apparent healthy lung without interstitial lung disease) groups were obtained and RNA were isolated for whole transcriptomic sequencing. Differentially Expressed Genes (DEGs) were determined followed by functional enrichment analysis and qPCR validation.
Results: A panel of differentially expressed genes were identified in bronchoalveolar lavage fluid cells (BALF) of PCPF as compare to control and IPF. Our analysis revealed dysregulated pathways associated with cell cycle regulation, immune responses, and neuroinflammatory processes. Real-time validation further supported these findings. The PPI network and module analysis shed light on potential biomarkers and underscore the complex interplay of molecular mechanisms in PCPF. The comparison of PCPF and IPF identified a significant downregulation of pathways that were more prominent in IPF.
Conclusion: This investigation provides crucial insights into the molecular mechanism of PCPF and also outlines avenues for prospective research and the development of therapeutic approaches.