Zinc ions facilitate metabolic bioenergetic recovery post spinal cord injury by activating microglial mitophagy through the STAT3-FOXO3a-SOD2 pathway.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-02-01 Epub Date: 2024-11-28 DOI:10.1016/j.freeradbiomed.2024.11.045
Yang Cui, Mingyu Bai, Shuang Gao, Haosen Zhao, Xifan Mei
{"title":"Zinc ions facilitate metabolic bioenergetic recovery post spinal cord injury by activating microglial mitophagy through the STAT3-FOXO3a-SOD2 pathway.","authors":"Yang Cui, Mingyu Bai, Shuang Gao, Haosen Zhao, Xifan Mei","doi":"10.1016/j.freeradbiomed.2024.11.045","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) with high global rates of disability and mortality, and no effective cure currently available. Microglia play a critical role in the progression of SCI, and enhancing their metabolic function may facilitate tissue repair and recovery. Mitochondrial dysfunction is a key feature of metabolic impairment, with the regulation of autophagy being essential for maintaining mitochondrial homeostasis and cell survival. The transcription factor Forkhead box O3a (FOXO3a) is integral to cellular metabolism, mitochondrial dysfunction, and oxidative stress responses, yet its role in post-SCI microglial metabolism remains underexplored. In this study, single-cell RNA sequencing reveals the crucial involvement of the FOXO signaling pathway in zinc ion-mediated enhancement of microglial metabolism. Mechanistically, oxidative stress-induced reactive oxygen species (ROS) accumulation exacerbates metabolic dysfunction by promoting excessive mitochondrial fission and impairing mitophagy. Importantly, zinc ions induce the nuclear translocation of FOXO3a, leading to its activation as a transcription factor. This activation enhances mitochondrial autophagy and fusion processes, thereby restoring microglial metabolic capacity. Our findings suggest that the zinc ion regulation of the STAT3-FOXO3a-SOD2 axis is pivotal in modulating mitochondrial gene expression, which governs microglial energy homeostasis and improves the spinal cord microenvironment, potentially enhancing neuronal survival. These insights highlight a promising therapeutic target for SCI.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":"64-79"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.11.045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) with high global rates of disability and mortality, and no effective cure currently available. Microglia play a critical role in the progression of SCI, and enhancing their metabolic function may facilitate tissue repair and recovery. Mitochondrial dysfunction is a key feature of metabolic impairment, with the regulation of autophagy being essential for maintaining mitochondrial homeostasis and cell survival. The transcription factor Forkhead box O3a (FOXO3a) is integral to cellular metabolism, mitochondrial dysfunction, and oxidative stress responses, yet its role in post-SCI microglial metabolism remains underexplored. In this study, single-cell RNA sequencing reveals the crucial involvement of the FOXO signaling pathway in zinc ion-mediated enhancement of microglial metabolism. Mechanistically, oxidative stress-induced reactive oxygen species (ROS) accumulation exacerbates metabolic dysfunction by promoting excessive mitochondrial fission and impairing mitophagy. Importantly, zinc ions induce the nuclear translocation of FOXO3a, leading to its activation as a transcription factor. This activation enhances mitochondrial autophagy and fusion processes, thereby restoring microglial metabolic capacity. Our findings suggest that the zinc ion regulation of the STAT3-FOXO3a-SOD2 axis is pivotal in modulating mitochondrial gene expression, which governs microglial energy homeostasis and improves the spinal cord microenvironment, potentially enhancing neuronal survival. These insights highlight a promising therapeutic target for SCI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌离子通过STAT3-FOXO3a-SOD2途径激活小胶质细胞有丝分裂促进脊髓损伤后代谢生物能量恢复。
脊髓损伤(SCI)是一种具有破坏性的中枢神经系统(CNS)疾病,具有很高的致残率和死亡率,目前尚无有效的治疗方法。小胶质细胞在脊髓损伤的进展中起着至关重要的作用,增强其代谢功能可能促进组织修复和恢复。线粒体功能障碍是代谢障碍的一个关键特征,自噬的调节对于维持线粒体稳态和细胞存活至关重要。转录因子叉头盒O3a (FOXO3a)在细胞代谢、线粒体功能障碍和氧化应激反应中不可或缺,但其在脊髓损伤后小胶质细胞代谢中的作用仍未得到充分研究。在这项研究中,单细胞RNA测序揭示了FOXO信号通路在锌离子介导的小胶质细胞代谢增强中的关键参与。从机制上讲,氧化应激诱导的活性氧(ROS)积累通过促进线粒体过度分裂和损害线粒体自噬而加剧代谢功能障碍。重要的是,锌离子诱导FOXO3a的核易位,导致其作为转录因子被激活。这种激活增强了线粒体自噬和融合过程,从而恢复了小胶质细胞的代谢能力。我们的研究结果表明,锌离子调控STAT3-FOXO3a-SOD2轴在调节线粒体基因表达中起关键作用,线粒体基因表达控制小胶质细胞能量稳态,改善脊髓微环境,可能提高神经元的存活率。这些发现突出了一个有希望的脊髓损伤治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
The race within a race: Together on the marathon starting line but miles apart in the experience. Pink1-dependent mitophagy in vascular smooth muscle cells: Implications for arterial constriction. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. The RNA chaperone Hfq is a novel regulator of catalase expression and hydrogen peroxide-induced oxidative stress response in Listeria monocytogenes EGD-e. NRF2 activation by 6-MSITC increases the generation of neuroprotective, soluble α amyloid precursor protein by inducing the metalloprotease gene ADAM17.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1