Zinc Ions Facilitate Metabolic Bioenergetic Recovery Post Spinal Cord Injury by Activating Microglial Mitophagy through the STAT3-FOXO3a-SOD2 Pathway.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2024-11-27 DOI:10.1016/j.freeradbiomed.2024.11.045
Yang Cui, Mingyu Bai, Shuang Gao, Haosen Zhao, Xifan Mei
{"title":"Zinc Ions Facilitate Metabolic Bioenergetic Recovery Post Spinal Cord Injury by Activating Microglial Mitophagy through the STAT3-FOXO3a-SOD2 Pathway.","authors":"Yang Cui, Mingyu Bai, Shuang Gao, Haosen Zhao, Xifan Mei","doi":"10.1016/j.freeradbiomed.2024.11.045","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) with high global rates of disability and mortality, and no effective cure currently available. Microglia play a critical role in the progression of SCI, and enhancing their metabolic function may facilitate tissue repair and recovery. Mitochondrial dysfunction is a key feature of metabolic impairment, with the regulation of autophagy being essential for maintaining mitochondrial homeostasis and cell survival. The transcription factor Forkhead box O3a (FOXO3a) is integral to cellular metabolism, mitochondrial dysfunction, and oxidative stress responses, yet its role in post-SCI microglial metabolism remains underexplored. In this study, single-cell RNA sequencing reveals the crucial involvement of the FOXO signaling pathway in zinc ion-mediated enhancement of microglial metabolism. Mechanistically, oxidative stress-induced reactive oxygen species (ROS) accumulation exacerbates metabolic dysfunction by promoting excessive mitochondrial fission and impairing mitophagy. Importantly, zinc ions induce the nuclear translocation of FOXO3a, leading to its activation as a transcription factor. This activation enhances mitochondrial autophagy and fusion processes, thereby restoring microglial metabolic capacity. Our findings suggest that the zinc ion regulation of the STAT3-FOXO3a-SOD2 axis is pivotal in modulating mitochondrial gene expression, which governs microglial energy homeostasis and improves the spinal cord microenvironment, potentially enhancing neuronal survival. These insights highlight a promising therapeutic target for SCI.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.11.045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) with high global rates of disability and mortality, and no effective cure currently available. Microglia play a critical role in the progression of SCI, and enhancing their metabolic function may facilitate tissue repair and recovery. Mitochondrial dysfunction is a key feature of metabolic impairment, with the regulation of autophagy being essential for maintaining mitochondrial homeostasis and cell survival. The transcription factor Forkhead box O3a (FOXO3a) is integral to cellular metabolism, mitochondrial dysfunction, and oxidative stress responses, yet its role in post-SCI microglial metabolism remains underexplored. In this study, single-cell RNA sequencing reveals the crucial involvement of the FOXO signaling pathway in zinc ion-mediated enhancement of microglial metabolism. Mechanistically, oxidative stress-induced reactive oxygen species (ROS) accumulation exacerbates metabolic dysfunction by promoting excessive mitochondrial fission and impairing mitophagy. Importantly, zinc ions induce the nuclear translocation of FOXO3a, leading to its activation as a transcription factor. This activation enhances mitochondrial autophagy and fusion processes, thereby restoring microglial metabolic capacity. Our findings suggest that the zinc ion regulation of the STAT3-FOXO3a-SOD2 axis is pivotal in modulating mitochondrial gene expression, which governs microglial energy homeostasis and improves the spinal cord microenvironment, potentially enhancing neuronal survival. These insights highlight a promising therapeutic target for SCI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Identification of tanshinone I as a natural Cu(II) ionophore Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity NRF2 activation by 6-MSITC increases the generation of neuroprotective, soluble α amyloid precursor protein by inducing the metalloprotease gene ADAM17. Reactive oxygen species in skeletal muscle injury, fatigue, regeneration and ageing: In memory of John Faulkner. Zinc Ions Facilitate Metabolic Bioenergetic Recovery Post Spinal Cord Injury by Activating Microglial Mitophagy through the STAT3-FOXO3a-SOD2 Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1