Kirenol alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the CK2/AKT pathway.
Yuqin Zhang, Yonghua Ye, Yi Feng, Xuezhen Li, Lingxuan Chen, Xiaoxue Zou, Guohong Yan, Yaping Chen, Lihong Nan, Wei Xu, Lixia Chen, Hua Li
{"title":"Kirenol alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the CK2/AKT pathway.","authors":"Yuqin Zhang, Yonghua Ye, Yi Feng, Xuezhen Li, Lingxuan Chen, Xiaoxue Zou, Guohong Yan, Yaping Chen, Lihong Nan, Wei Xu, Lixia Chen, Hua Li","doi":"10.1016/j.freeradbiomed.2025.03.022","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke represents a predominant cause of morbidity and mortality globally, resulting from abrupt vascular occlusion or rupture, which precipitates considerable neuronal damage. This study aims to shed more light on the specific neuroprotective mechanisms of Kirenol, a bioactive diterpene derived from traditional herbal medicine, with a particular focus on its regulation of mitochondrial dynamics via the CK2/AKT signalling pathway and its impact on the mitochondrial fusion protein Optic atrophy 1 (Opa1). The effects of Kirenol on neuronal viability, mitochondrial function, and pertinent signalling pathways were evaluated by employing a middle cerebral artery occlusion (MCAO) model in rats and subjecting HT22 neuronal cells to oxidative stress. Treatment with Kirenol significantly improved neurological outcomes, augmented Opa1 expression, and restored apoptotic-related protein markers, antioxidative factors, mitochondrial membrane potential, and adenosine triphosphate (ATP) levels (P < 0.01). Mechanistically, Kirenol elevated CK2 levels and phosphorylated AKT while inhibiting CK2/AKT signalling attenuated Kirenol's protective effects on Opa1 expression. Furthermore, silencing Opa1 using siRNA diminished the neuroprotective effects of Kirenol on oxidative stress and apoptosis-related markers, underscoring the critical role of Opa1. In vitro assessments demonstrated that Kirenol effectively mitigated oxidative stress-induced neuronal damage, restoring cell morphology and viability. Kirenol exhibited dose-dependent neuroprotective effects in the MCAO model (P < 0.01). These findings elucidate the neuroprotective role of Kirenol in ischemic stroke through Opa1-mediated mitochondrial fusion and highlight the CK2/AKT pathway as a promising therapeutic target.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.03.022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke represents a predominant cause of morbidity and mortality globally, resulting from abrupt vascular occlusion or rupture, which precipitates considerable neuronal damage. This study aims to shed more light on the specific neuroprotective mechanisms of Kirenol, a bioactive diterpene derived from traditional herbal medicine, with a particular focus on its regulation of mitochondrial dynamics via the CK2/AKT signalling pathway and its impact on the mitochondrial fusion protein Optic atrophy 1 (Opa1). The effects of Kirenol on neuronal viability, mitochondrial function, and pertinent signalling pathways were evaluated by employing a middle cerebral artery occlusion (MCAO) model in rats and subjecting HT22 neuronal cells to oxidative stress. Treatment with Kirenol significantly improved neurological outcomes, augmented Opa1 expression, and restored apoptotic-related protein markers, antioxidative factors, mitochondrial membrane potential, and adenosine triphosphate (ATP) levels (P < 0.01). Mechanistically, Kirenol elevated CK2 levels and phosphorylated AKT while inhibiting CK2/AKT signalling attenuated Kirenol's protective effects on Opa1 expression. Furthermore, silencing Opa1 using siRNA diminished the neuroprotective effects of Kirenol on oxidative stress and apoptosis-related markers, underscoring the critical role of Opa1. In vitro assessments demonstrated that Kirenol effectively mitigated oxidative stress-induced neuronal damage, restoring cell morphology and viability. Kirenol exhibited dose-dependent neuroprotective effects in the MCAO model (P < 0.01). These findings elucidate the neuroprotective role of Kirenol in ischemic stroke through Opa1-mediated mitochondrial fusion and highlight the CK2/AKT pathway as a promising therapeutic target.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.