Caragana jubata ethanol extract ameliorates the symptoms of STZ-HFD-induced T2DM mice by PKC/GLUT4 pathway

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Journal of ethnopharmacology Pub Date : 2024-11-28 DOI:10.1016/j.jep.2024.119171
Ping Zhao , Shunhua Zhong , Jingya Liao , Jingze Tao , Yanhong Yao , Ping Song , Xinzhou Yang
{"title":"Caragana jubata ethanol extract ameliorates the symptoms of STZ-HFD-induced T2DM mice by PKC/GLUT4 pathway","authors":"Ping Zhao ,&nbsp;Shunhua Zhong ,&nbsp;Jingya Liao ,&nbsp;Jingze Tao ,&nbsp;Yanhong Yao ,&nbsp;Ping Song ,&nbsp;Xinzhou Yang","doi":"10.1016/j.jep.2024.119171","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div><em>Caragana jubata</em> (Pall.) Poir., a traditional Tibetan medicinal plant in China, is renowned in Tibetan medicine for its hypoglycemic properties and long-standing use in treating diabetes. Despite its extensive clinical use, the mechanisms underlying its blood sugar-lowering effects still need to be explored. Our investigation contributes a new understanding of the hypoglycemic mechanism of <em>C. jubata</em>, validating its traditional medicinal application by demonstrating its ability to increase GLUT4 expression and glucose uptake, crucial elements in treating type 2 diabetes mellitus (T2DM).</div></div><div><h3>Aim of the study</h3><div>This study investigated the potential anti-diabetic effects of <em>C. jubata</em> ethanol extract (CJEE) by upregulating GLUT4 expression and promoting its integration into the plasma membrane in L6 skeletal muscle cells and diabetic mice. Additionally, the research aimed to uncover the mechanisms involved, particularly focusing on the involvement of the PKC signaling pathway and Ca<sup>2</sup>⁺ release.</div></div><div><h3>Materials and methods</h3><div>The chemical composition of CJEE was evaluated using UPLC-Q-TOF/MS. Glucose uptake, GLUT4 expression, and plasma membrane fusion in L6 cells were assessed through a glucose oxidase kit, Western blotting, and laser confocal microscopy, respectively. The modulation of GLUT4 by Akt, AMPK, and PKC signaling pathways was investigated utilizing specific inhibitors. The impact of CJEE on intracellular Ca<sup>2</sup>⁺ concentration was determined with Fluo-4 dye. Additionally, an <em>in vivo</em> study was conducted on high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetic mice to evaluate the effects of CJEE on blood glucose levels, insulin resistance, lipid metabolism, and pancreatic function.</div></div><div><h3>Results</h3><div>Chemical analysis of CJEE revealed 18 major constituents, primarily flavonoids. In L6 cells, CJEE was found to significantly enhance glucose uptake, increase GLUT4 expression, and facilitate its fusion with the plasma membrane. The study illustrated that CJEE predominantly activates the PKC pathway, with minimal involvement of the Akt pathway, emphasizing the critical role of Ca<sup>2</sup>⁺ release in GLUT4 regulation. Diabetic mice treated with CJEE exhibited decreased fasting blood glucose levels, enhanced oral glucose tolerance, reduced insulin resistance, and ameliorated lipid metabolism disorders. Additionally, CJEE elevated GLUT4 expression in insulin-sensitive tissues and alleviated pancreatic and hepatic lesions.</div></div><div><h3>Conclusions</h3><div>Our results demonstrated that the activation of the PKC pathway and release of Ca<sup>2</sup>⁺ by CJEE induce GLUT4 expression, promoting its fusion with the plasma membrane. Consequently, this process boosts glucose uptake and enhances insulin sensitivity, underscoring CJEE as a promising option for managing T2DM.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"339 ","pages":"Article 119171"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874124014703","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance

Caragana jubata (Pall.) Poir., a traditional Tibetan medicinal plant in China, is renowned in Tibetan medicine for its hypoglycemic properties and long-standing use in treating diabetes. Despite its extensive clinical use, the mechanisms underlying its blood sugar-lowering effects still need to be explored. Our investigation contributes a new understanding of the hypoglycemic mechanism of C. jubata, validating its traditional medicinal application by demonstrating its ability to increase GLUT4 expression and glucose uptake, crucial elements in treating type 2 diabetes mellitus (T2DM).

Aim of the study

This study investigated the potential anti-diabetic effects of C. jubata ethanol extract (CJEE) by upregulating GLUT4 expression and promoting its integration into the plasma membrane in L6 skeletal muscle cells and diabetic mice. Additionally, the research aimed to uncover the mechanisms involved, particularly focusing on the involvement of the PKC signaling pathway and Ca2⁺ release.

Materials and methods

The chemical composition of CJEE was evaluated using UPLC-Q-TOF/MS. Glucose uptake, GLUT4 expression, and plasma membrane fusion in L6 cells were assessed through a glucose oxidase kit, Western blotting, and laser confocal microscopy, respectively. The modulation of GLUT4 by Akt, AMPK, and PKC signaling pathways was investigated utilizing specific inhibitors. The impact of CJEE on intracellular Ca2⁺ concentration was determined with Fluo-4 dye. Additionally, an in vivo study was conducted on high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetic mice to evaluate the effects of CJEE on blood glucose levels, insulin resistance, lipid metabolism, and pancreatic function.

Results

Chemical analysis of CJEE revealed 18 major constituents, primarily flavonoids. In L6 cells, CJEE was found to significantly enhance glucose uptake, increase GLUT4 expression, and facilitate its fusion with the plasma membrane. The study illustrated that CJEE predominantly activates the PKC pathway, with minimal involvement of the Akt pathway, emphasizing the critical role of Ca2⁺ release in GLUT4 regulation. Diabetic mice treated with CJEE exhibited decreased fasting blood glucose levels, enhanced oral glucose tolerance, reduced insulin resistance, and ameliorated lipid metabolism disorders. Additionally, CJEE elevated GLUT4 expression in insulin-sensitive tissues and alleviated pancreatic and hepatic lesions.

Conclusions

Our results demonstrated that the activation of the PKC pathway and release of Ca2⁺ by CJEE induce GLUT4 expression, promoting its fusion with the plasma membrane. Consequently, this process boosts glucose uptake and enhances insulin sensitivity, underscoring CJEE as a promising option for managing T2DM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
期刊最新文献
Antinociceptive, antineuropathic, and antimigraine-like activities of Fritillaria imperialis L. rich in verticinone on rats: Mechanisms of action Caragana jubata ethanol extract ameliorates the symptoms of STZ-HFD-induced T2DM mice by PKC/GLUT4 pathway Corrigendum to "Jingfang Granule mitigates Coxsackievirus B3-induced myocardial damage by modulating mucolipin 1 expression" [J. Ethnopharmacol. 320 (2024) 117396]. Corrigendum to "Study on the mechanism of Shuganzhi Tablet against nonalcoholic fatty liver disease and lipid regulation effects of its main substances in vitro" [J. Ethnopharmacol. 316 (2023) 116780]. Integrating metabolomics and network pharmacology to investigate Da-Chai-Hu Decoction prevents kidney injury in diabetic mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1