Integrative mapping of human CD8+ T cells in inflammation and cancer.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-11-29 DOI:10.1038/s41592-024-02530-0
Ziwei Xue, Lize Wu, Ruonan Tian, Bing Gao, Yu Zhao, Bing He, Di Sun, Bingkang Zhao, Yicheng Li, Kaixiang Zhu, Lie Wang, Jianhua Yao, Wanlu Liu, Linrong Lu
{"title":"Integrative mapping of human CD8<sup>+</sup> T cells in inflammation and cancer.","authors":"Ziwei Xue, Lize Wu, Ruonan Tian, Bing Gao, Yu Zhao, Bing He, Di Sun, Bingkang Zhao, Yicheng Li, Kaixiang Zhu, Lie Wang, Jianhua Yao, Wanlu Liu, Linrong Lu","doi":"10.1038/s41592-024-02530-0","DOIUrl":null,"url":null,"abstract":"<p><p>CD8<sup>+</sup> T cells exhibit remarkable phenotypic diversity in inflammation and cancer. However, a comprehensive understanding of their clonal landscape and dynamics remains elusive. Here we introduce scAtlasVAE, a deep-learning-based model for the integration of large-scale single-cell RNA sequencing data and cross-atlas comparisons. scAtlasVAE has enabled us to construct an extensive human CD8<sup>+</sup> T cell atlas, comprising 1,151,678 cells from 961 samples across 68 studies and 42 disease conditions, with paired T cell receptor information. Through incorporating information in T cell receptor clonal expansion and sharing, we have successfully established connections between distinct cell subtypes and shed light on their phenotypic and functional transitions. Notably, our approach characterizes three distinct exhausted T cell subtypes and reveals diverse transcriptome and clonal sharing patterns in autoimmune and immune-related adverse event inflammation. Furthermore, scAtlasVAE facilitates the automatic annotation of CD8<sup>+</sup> T cell subtypes in query single-cell RNA sequencing datasets, enabling unbiased and scalable analyses. In conclusion, our work presents a comprehensive single-cell reference and computational framework for CD8<sup>+</sup> T cell research.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02530-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

CD8+ T cells exhibit remarkable phenotypic diversity in inflammation and cancer. However, a comprehensive understanding of their clonal landscape and dynamics remains elusive. Here we introduce scAtlasVAE, a deep-learning-based model for the integration of large-scale single-cell RNA sequencing data and cross-atlas comparisons. scAtlasVAE has enabled us to construct an extensive human CD8+ T cell atlas, comprising 1,151,678 cells from 961 samples across 68 studies and 42 disease conditions, with paired T cell receptor information. Through incorporating information in T cell receptor clonal expansion and sharing, we have successfully established connections between distinct cell subtypes and shed light on their phenotypic and functional transitions. Notably, our approach characterizes three distinct exhausted T cell subtypes and reveals diverse transcriptome and clonal sharing patterns in autoimmune and immune-related adverse event inflammation. Furthermore, scAtlasVAE facilitates the automatic annotation of CD8+ T cell subtypes in query single-cell RNA sequencing datasets, enabling unbiased and scalable analyses. In conclusion, our work presents a comprehensive single-cell reference and computational framework for CD8+ T cell research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Publisher Correction: Massively parallel single-cell sequencing of diverse microbial populations. Human CD8+ T cell map with single-cell transcriptome and TCR information. Integrative mapping of human CD8+ T cells in inflammation and cancer. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Enhancing functional gene set analysis with large language models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1