Nano-Biosensors for mRNA-Based Cell Sorting Using Intracellular Markers at the Early Stage of Cell Reprogramming

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-30 DOI:10.1002/adfm.202410910
Yang Song, Jennifer Soto, Xiao Lin, Tyler Hoffman, Erin Hu, Ninghao Zhu, Jana Zarubova, Yifan Wu, Jing Tian, Pak Kin Wong, Song Li
{"title":"Nano-Biosensors for mRNA-Based Cell Sorting Using Intracellular Markers at the Early Stage of Cell Reprogramming","authors":"Yang Song, Jennifer Soto, Xiao Lin, Tyler Hoffman, Erin Hu, Ninghao Zhu, Jana Zarubova, Yifan Wu, Jing Tian, Pak Kin Wong, Song Li","doi":"10.1002/adfm.202410910","DOIUrl":null,"url":null,"abstract":"Cell reprogramming and manufacturing have broad applications in tissue regeneration and disease treatment. However, many derived cell types lack unique cell surface markers for protein-based cell sorting, making it difficult to isolate these cells from mixed populations. Additionally, there is a need to identify and isolate cells of interest at the early stages of cell expansion. To address this challenge, a nucleic acid-based gold nanorod (NAGNR) fluorescent biosensor was engineered to detect the mRNA expression of intracellular markers for cell sorting. Its application is demonstrated in isolating induced neuronal (iN) cells from dermal fibroblast populations during the early stages of cell reprogramming. Cell sorting based on the mRNA of the neuronal transcriptional factor Ascl1 resulted in an enrichment of iN cells from 3% to 72%, and additional sorting with the transcriptional factor Scn2 further increased iN enrichment. Moreover, NAGNR biosensors can be used in conjunction with protein marker-based cell sorting. NAGNR-sorted iN cells show a functional response to electrical stimulation in a co-culture of iN cells and muscle cells. These findings demonstrate that NAGNR-based cell sorting offers great potential for cell identification and isolation at an early stage of cell reprogramming and manufacturing.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"31 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410910","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell reprogramming and manufacturing have broad applications in tissue regeneration and disease treatment. However, many derived cell types lack unique cell surface markers for protein-based cell sorting, making it difficult to isolate these cells from mixed populations. Additionally, there is a need to identify and isolate cells of interest at the early stages of cell expansion. To address this challenge, a nucleic acid-based gold nanorod (NAGNR) fluorescent biosensor was engineered to detect the mRNA expression of intracellular markers for cell sorting. Its application is demonstrated in isolating induced neuronal (iN) cells from dermal fibroblast populations during the early stages of cell reprogramming. Cell sorting based on the mRNA of the neuronal transcriptional factor Ascl1 resulted in an enrichment of iN cells from 3% to 72%, and additional sorting with the transcriptional factor Scn2 further increased iN enrichment. Moreover, NAGNR biosensors can be used in conjunction with protein marker-based cell sorting. NAGNR-sorted iN cells show a functional response to electrical stimulation in a co-culture of iN cells and muscle cells. These findings demonstrate that NAGNR-based cell sorting offers great potential for cell identification and isolation at an early stage of cell reprogramming and manufacturing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Moisture‐Resistant Nanofiber Membrane Loaded with Copper‐Manganese‐Tin Oxides for Dust and CO Filtration in High Humidity Environments High‐Performance and Scalable Organosilicon Membranes for Energy‐Efficient Alcohol Purification Advances in Single‐Halogen Wide‐Bandgap Perovskite Solar Cells Enhanced Carrier Mobility and Thermoelectric Performance by Nanostructure Engineering of PEDOT Thin Films Fabricated via the OCVD Method Using SbCl5 Oxidant All‐Carbon Piezoresistive Sensor: Enhanced Sensitivity and Wide Linear Range via Multiscale Design for Wearable Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1