Qixuan Xiang, Guanjie Zhao, Tao Tang, Hao Zhang, Zhiyuan Liu, Xianglong Zhang, Yaping Zhao, Huijun Tan
{"title":"All‐Carbon Piezoresistive Sensor: Enhanced Sensitivity and Wide Linear Range via Multiscale Design for Wearable Applications","authors":"Qixuan Xiang, Guanjie Zhao, Tao Tang, Hao Zhang, Zhiyuan Liu, Xianglong Zhang, Yaping Zhao, Huijun Tan","doi":"10.1002/adfm.202418706","DOIUrl":null,"url":null,"abstract":"Piezoresistive sensors are indispensable in applications such as healthcare monitoring, artificial intelligence, and advanced communication systems. However, achieving wearable sensors that offer both high sensitivity and a wide linear range remains a significant challenge. Here, an all‐carbon piezoresistive sensor is presented, named, featuring high biocompatibility, chemical stability, environmental sustainability, and a straightforward fabrication process. This sensor, integrating a double‐sided pyramidal carbon aerogel (DPA) as the sensing layer, a silicone frame as the elastic support (ES), and superhydrophobic graphene‐coated nylon fabric as the breathable conductive substrate (BCS), was named as DPA‐ES@BCS. Finite element analysis confirms that the synergistic interaction between the DPA and silicone frame enhances the sensor's sensitivity while extending its linear range. This multiscale design achieves an exceptional sensitivity of 37.3 kPa<jats:sup>−1</jats:sup>, a broad linear detection ranges from 0 to 1.4 MPa, and outstanding stability over 30 000 cycles. Additionally, the high‐performance wearable sensor is well‐suited for real‐time physiological signal monitoring and demonstrates exceptional capability in voice recognition, accurately distinguishing words using machine learning algorithms. Moreover, the DPA‐ES@BCS sensor array shows great potential for enhancing information security through dual‐factor authentication. This approach not only advances the piezoresistive performance of all‐carbon sensors but also provides a strong foundation for developing next‐generation sensor technologies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"12 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoresistive sensors are indispensable in applications such as healthcare monitoring, artificial intelligence, and advanced communication systems. However, achieving wearable sensors that offer both high sensitivity and a wide linear range remains a significant challenge. Here, an all‐carbon piezoresistive sensor is presented, named, featuring high biocompatibility, chemical stability, environmental sustainability, and a straightforward fabrication process. This sensor, integrating a double‐sided pyramidal carbon aerogel (DPA) as the sensing layer, a silicone frame as the elastic support (ES), and superhydrophobic graphene‐coated nylon fabric as the breathable conductive substrate (BCS), was named as DPA‐ES@BCS. Finite element analysis confirms that the synergistic interaction between the DPA and silicone frame enhances the sensor's sensitivity while extending its linear range. This multiscale design achieves an exceptional sensitivity of 37.3 kPa−1, a broad linear detection ranges from 0 to 1.4 MPa, and outstanding stability over 30 000 cycles. Additionally, the high‐performance wearable sensor is well‐suited for real‐time physiological signal monitoring and demonstrates exceptional capability in voice recognition, accurately distinguishing words using machine learning algorithms. Moreover, the DPA‐ES@BCS sensor array shows great potential for enhancing information security through dual‐factor authentication. This approach not only advances the piezoresistive performance of all‐carbon sensors but also provides a strong foundation for developing next‐generation sensor technologies.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.