Heng Zhang , Jie Zhang , Shen Fan , Jie Lu , Weipeng Zhang , Wei Ding
{"title":"Synthetic biofilm community for efficient phosphorus removal from high-salinity wastewater","authors":"Heng Zhang , Jie Zhang , Shen Fan , Jie Lu , Weipeng Zhang , Wei Ding","doi":"10.1016/j.biortech.2024.131902","DOIUrl":null,"url":null,"abstract":"<div><div>Substantial amounts of phosphorus are discharged into water bodies, leading to an urgent need to develop methods for phosphorus removal. Here, 12 novel polyphosphate-accumulating organisms were identified from marine biofilms through genomic screening and incorporated into a stable community for phosphorus removal from high-salinity water. The synthetic biofilm community achieved an 82% removal efficiency in a marine broth medium. Electron microscopy showed storage of polyphosphate particles in the bacterial cells. Metatranscriptomic analysis indicated expression changes of genes for phosphate transport, as well as relevant metabolic pathways. In particular, <em>pst</em> genes encoding transporters with high phosphate affinity were downregulated at high-phosphorus concentration, whereas <em>pit</em> genes encoding transporters with low phosphate affinity were constitutively expressed. Furthermore, the synthetic biofilm community exhibited remarkable efficiency in removing over 92% of phosphorus from fish farming facility wastewater. Taken together, synthetic community using marine biofilm bacteria is a new strategy of phosphorus removal.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"418 ","pages":"Article 131902"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424016067","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Substantial amounts of phosphorus are discharged into water bodies, leading to an urgent need to develop methods for phosphorus removal. Here, 12 novel polyphosphate-accumulating organisms were identified from marine biofilms through genomic screening and incorporated into a stable community for phosphorus removal from high-salinity water. The synthetic biofilm community achieved an 82% removal efficiency in a marine broth medium. Electron microscopy showed storage of polyphosphate particles in the bacterial cells. Metatranscriptomic analysis indicated expression changes of genes for phosphate transport, as well as relevant metabolic pathways. In particular, pst genes encoding transporters with high phosphate affinity were downregulated at high-phosphorus concentration, whereas pit genes encoding transporters with low phosphate affinity were constitutively expressed. Furthermore, the synthetic biofilm community exhibited remarkable efficiency in removing over 92% of phosphorus from fish farming facility wastewater. Taken together, synthetic community using marine biofilm bacteria is a new strategy of phosphorus removal.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.