Merging mixed reality and computational modeling for enhanced visualization of cardiac biomechanics

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-12-01 DOI:10.1016/j.medengphy.2024.104258
Eleonora Costagliola , Francesco Musumeci , Caterina Gandolfo , Michele Pilato , Salvatore Pasta
{"title":"Merging mixed reality and computational modeling for enhanced visualization of cardiac biomechanics","authors":"Eleonora Costagliola ,&nbsp;Francesco Musumeci ,&nbsp;Caterina Gandolfo ,&nbsp;Michele Pilato ,&nbsp;Salvatore Pasta","doi":"10.1016/j.medengphy.2024.104258","DOIUrl":null,"url":null,"abstract":"<div><div>Mixed reality (MR) has the potential to complement numerical simulations for enhanced post-processing and integrate digital models into the daily clinical practice of healthcare professionals. In complex cardiac anatomies, the decision-making process for bioprosthesis implantation involves the challenging analysis of heart valve distribution, positioning, and sealing. This study proposes a framework to visualize computational modeling results in an immersive environment for comprehensive analysis of the geometric implications of implanted devices on human heart function. After computational analysis, the biomechanical behavior of the Living Heart Human Model (LHHM) was used to develop MR content for the immersive visualization of the heart kinematics and the electrical field. Additionally, MR content was developed to assess the spatial implications of left ventricular outflow tract (LVOT) obstruction as observed in transcatheter mitral valve replacement (TMVR). Findings demonstrated that augmented exploration of cardiac biomechanics can be used for a better understanding of the electrical field of the beating heart. In the case of TMVR simulation, MR-related analysis of LVOT obstruction can result in improved visualization and manipulation of 3D anatomies and assessment of device-induced anatomic constraints. We conclude that the synergy between in-silico modeling and MR can potentially enhance physicians' ability to visualize the implications of biomedical device implants in complex cardiac anatomies, benefiting both physicians and simulation experts.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"134 ","pages":"Article 104258"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001590","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed reality (MR) has the potential to complement numerical simulations for enhanced post-processing and integrate digital models into the daily clinical practice of healthcare professionals. In complex cardiac anatomies, the decision-making process for bioprosthesis implantation involves the challenging analysis of heart valve distribution, positioning, and sealing. This study proposes a framework to visualize computational modeling results in an immersive environment for comprehensive analysis of the geometric implications of implanted devices on human heart function. After computational analysis, the biomechanical behavior of the Living Heart Human Model (LHHM) was used to develop MR content for the immersive visualization of the heart kinematics and the electrical field. Additionally, MR content was developed to assess the spatial implications of left ventricular outflow tract (LVOT) obstruction as observed in transcatheter mitral valve replacement (TMVR). Findings demonstrated that augmented exploration of cardiac biomechanics can be used for a better understanding of the electrical field of the beating heart. In the case of TMVR simulation, MR-related analysis of LVOT obstruction can result in improved visualization and manipulation of 3D anatomies and assessment of device-induced anatomic constraints. We conclude that the synergy between in-silico modeling and MR can potentially enhance physicians' ability to visualize the implications of biomedical device implants in complex cardiac anatomies, benefiting both physicians and simulation experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合混合现实和计算建模增强心脏生物力学可视化
混合现实(MR)有潜力补充数字模拟,以增强后处理,并将数字模型集成到医疗保健专业人员的日常临床实践中。在复杂的心脏解剖结构中,生物假体植入的决策过程涉及对心脏瓣膜分布、定位和密封的分析。本研究提出了一个框架,在沉浸式环境中可视化计算建模结果,以全面分析植入装置对人体心脏功能的几何影响。在计算分析后,利用活体心脏人体模型(LHHM)的生物力学行为来开发MR内容,实现心脏运动学和电场的沉浸式可视化。此外,我们还开发了磁共振内容来评估经导管二尖瓣置换术(TMVR)中观察到的左心室流出道(LVOT)阻塞的空间影响。研究结果表明,增强心脏生物力学的探索可以用于更好地理解心脏跳动的电场。在TMVR模拟的情况下,LVOT阻塞的mr相关分析可以改善三维解剖的可视化和操作,并评估设备引起的解剖约束。我们的结论是,计算机建模和MR之间的协同作用可以潜在地增强医生在复杂心脏解剖中可视化生物医学设备植入的影响的能力,使医生和模拟专家都受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation Influence of surface type on outdoor gait parameters measured using an In-Shoe Motion Sensor System Assessment of pre- and post-operative gait dynamics in total knee arthroplasty by a wearable capture system A novel 3D lightweight model for COVID-19 lung CT Lesion Segmentation ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1