Ensemble transfer learning meets explainable AI: A deep learning approach for leaf disease detection

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2024-12-01 DOI:10.1016/j.ecoinf.2024.102925
Hetarth Raval, Jyotismita Chaki
{"title":"Ensemble transfer learning meets explainable AI: A deep learning approach for leaf disease detection","authors":"Hetarth Raval,&nbsp;Jyotismita Chaki","doi":"10.1016/j.ecoinf.2024.102925","DOIUrl":null,"url":null,"abstract":"<div><div>Global food security is threatened by plant diseases and manual detection methods are often labor-intensive and time-consuming. Deep learning offers a promising solution by enabling early and accurate detection of leaf diseases. This study presents a novel deep-learning model designed to address the challenges of real-world leaf disease identification. To enhance the model's robustness, we incorporated six datasets (LD, LD1, LD2, LD3, LD4, LD5) which include image augmentation techniques, like flipped versions (LD1) and controlled noise (LD2, LD3). Additionally, we introduced new datasets with additional noise types (LD4) and real-world scenarios (LD5). To further improve accuracy, we employed an ensemble approach, combining MobileNetV3_Small and EfficientNetV2B3 with weighted voting. Our model achieved exceptional performance, surpassing 94 % accuracy on imbalanced data (LD) and exceeding 99 % on balanced, high-quality data (LD1). Even in noisy environments (LD2, LD3, LD4, LD5), our model consistently outperformed other approaches, maintaining an accuracy rate above 90 %. To ensure transparency and interpretability, we utilized Explainable AI (LIME) to visualize the model's decision-making process. These results demonstrate the potential of our model as a reliable and accurate tool for leaf disease detection in practical agricultural settings.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102925"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004679","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Global food security is threatened by plant diseases and manual detection methods are often labor-intensive and time-consuming. Deep learning offers a promising solution by enabling early and accurate detection of leaf diseases. This study presents a novel deep-learning model designed to address the challenges of real-world leaf disease identification. To enhance the model's robustness, we incorporated six datasets (LD, LD1, LD2, LD3, LD4, LD5) which include image augmentation techniques, like flipped versions (LD1) and controlled noise (LD2, LD3). Additionally, we introduced new datasets with additional noise types (LD4) and real-world scenarios (LD5). To further improve accuracy, we employed an ensemble approach, combining MobileNetV3_Small and EfficientNetV2B3 with weighted voting. Our model achieved exceptional performance, surpassing 94 % accuracy on imbalanced data (LD) and exceeding 99 % on balanced, high-quality data (LD1). Even in noisy environments (LD2, LD3, LD4, LD5), our model consistently outperformed other approaches, maintaining an accuracy rate above 90 %. To ensure transparency and interpretability, we utilized Explainable AI (LIME) to visualize the model's decision-making process. These results demonstrate the potential of our model as a reliable and accurate tool for leaf disease detection in practical agricultural settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
A novel model for mapping soil organic matter: Integrating temporal and spatial characteristics A deep learning model for detecting and classifying multiple marine mammal species from passive acoustic data Impact of discharge regulation on zooplankton communities regarding indicator species and their thresholds in the cascade weirs of the Yeongsan River Study of underwater sound propagation and attenuation characteristics at the Yangjiang offshore wind farma Spatiotemporal analysis of ocean primary productivity in Bohai Sea estimated using improved DINEOF reconstructed MODIS data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1